Advertisement

Emerging Food Allergy Therapies

  • Luanna Yang
  • Edwin H. KimEmail author
Chapter
  • 54 Downloads

Abstract

Many exciting food allergy therapies, including allergen-specific and non-specific treatment techniques, are currently under clinical investigation. The most well-studied treatment modality is food immunotherapy, which comes in several types including oral (OIT), epicutaneous (EPIT), and sublingual (SLIT). As a follow-up to the prior discussions on OIT and EPIT, this chapter focuses on emerging therapies that are earlier in development. With its growing body of evidence, this chapter begins with a general overview of SLIT, including its proposed mechanism of action, efficacy, and side effects. Advantages and disadvantages of SLIT when compared to OIT and EPIT are also highlighted. Other food-specific therapies reviewed in this chapter include peptide-based vaccines, recombinant allergen vaccines, allergen DNA vaccinations, and transgenic plants, which have less supportive clinical study data available but which present exciting possible treatment modalities. Studies evaluating the use of non-allergen-specific therapies in the treatment of food allergy, including anti-IgE treatment (used as monotherapy or as an adjunct to food-specific therapies), traditional Chinese medicine, and probiotics are also reviewed. Finally, understanding that food immunotherapy may become a standard part of clinical practice in the very near future, this chapter concludes with a discussion about patient-specific factors and preferences for the clinician to consider when deciding on the optimal treatment modality for an individual patient.

Keywords

Food allergy Food immunotherapy Recombinant food allergens Vaccines Peptide immunotherapy 

References

  1. 1.
    Sicherer SH. Epidemiology of food allergy. J Allergy Clin Immunol. 2011;127(3):594–602.  https://doi.org/10.1016/j.jaci.2010.11.044.CrossRefPubMedGoogle Scholar
  2. 2.
    Branum AM, Lukacs SL. Food allergy among children in the United States. Pediatrics. 2009;124(6):1549–55.  https://doi.org/10.1542/peds.2009-1210.CrossRefPubMedGoogle Scholar
  3. 3.
    Sampson HA, Aceves S, Bock SA, James J, Jones S, Lang D, et al. Food allergy: a practice parameter update-2014. J Allergy Clin Immunol. 2014;134(5):1016–25 e43.  https://doi.org/10.1016/j.jaci.2014.05.013.CrossRefPubMedGoogle Scholar
  4. 4.
    Gupta RS, Warren CM, Smith BM, Blumenstock JA, Jiang J, Davis MM, et al. The public health impact of parent-reported childhood food allergies in the United States. Pediatrics. 2018;142(6):e20181235.CrossRefGoogle Scholar
  5. 5.
    Gupta RS, Warren CM, Smith BM, Jiang J, Blumenstock JA, Davis MM, et al. Prevalence and severity of food allergies among US adults. JAMA Netw Open. 2019;2(1):e185630-e185630.CrossRefGoogle Scholar
  6. 6.
    Vickery BP, Scurlock AM, Jones SM, Burks AW. Mechanisms of immune tolerance relevant to food allergy. J Allergy Clin Immunol. 2011;127(3):576–84;. quiz 85-6.  https://doi.org/10.1016/j.jaci.2010.12.1116.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Berin MC, Shreffler WG. Mechanisms underlying induction of tolerance to foods. Immunol Allergy Clin N Am. 2016;36(1):87–102.  https://doi.org/10.1016/j.iac.2015.08.002.CrossRefGoogle Scholar
  8. 8.
    Lieberman JA, Sicherer SH. Quality of life in food allergy. Curr Opin Allergy Clin Immunol. 2011;11(3):236–42.  https://doi.org/10.1097/ACI.0b013e3283464cf0.CrossRefPubMedGoogle Scholar
  9. 9.
    Cummings AJ, Knibb RC, Erlewyn-Lajeunesse M, King RM, Roberts G, Lucas JSA. Management of nut allergy influences quality of life and anxiety in children and their mothers. Pediatr Allergy Immunol. 2010;21(4p1):586–94.  https://doi.org/10.1111/j.1399-3038.2009.00975.x.CrossRefPubMedGoogle Scholar
  10. 10.
    Gupta R, Holdford D, Bilaver L, Dyer A, Holl JL, Meltzer D. The economic impact of childhood food allergy in the United States. JAMA Pediatr. 2013;167(11):1026–31.  https://doi.org/10.1001/jamapediatrics.2013.2376.CrossRefPubMedGoogle Scholar
  11. 11.
    Anvari S, Anagnostou K. The nuts and bolts of food immunotherapy: the future of food allergy. Children (Basel). 2018;5(4):47.  https://doi.org/10.3390/children5040047.CrossRefGoogle Scholar
  12. 12.
    Burks AW, Sampson HA, Plaut M, Lack G, Akdis CA. Treatment for food allergy. J Allergy Clin Immunol. 2018;141(1):1–9.  https://doi.org/10.1016/j.jaci.2017.11.004.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen M, Land M. The current state of food allergy therapeutics. Hum Vaccin Immunother. 2017;13(10):2434–42.  https://doi.org/10.1080/21645515.2017.1359363.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Burks AW, Wood RA, Jones SM, Sicherer SH, Fleischer DM, Scurlock AM, et al. Sublingual immunotherapy for peanut allergy: long-term follow-up of a randomized multicenter trial. J Allergy Clin Immunol. 2015;135(5):1240–8 e1-3.  https://doi.org/10.1016/j.jaci.2014.12.1917.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sampath V, Sindher SB, Zhang W, Nadeau KC. New treatment directions in food allergy. Ann Allergy Asthma Immunol. 2018;120(3):254–62.  https://doi.org/10.1016/j.anai.2018.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Vickery BP, Scurlock AM, Kulis M, Steele PH, Kamilaris J, Berglund JP, et al. Sustained unresponsiveness to peanut in subjects who have completed peanut oral immunotherapy. J Allergy Clin Immunol. 2014;133(2):468–75.e6.  https://doi.org/10.1016/j.jaci.2013.11.007.CrossRefPubMedGoogle Scholar
  17. 17.
    Jones SM, Burks AW, Dupont C. State of the art on food allergen immunotherapy: oral, sublingual, and epicutaneous. J Allergy Clin Immunol. 2014;133(2):318–23.  https://doi.org/10.1016/j.jaci.2013.12.1040.CrossRefPubMedGoogle Scholar
  18. 18.
    Burks AW, Jones SM, Wood RA, Fleischer DM, Sicherer SH, Lindblad RW, et al. Oral immunotherapy for treatment of egg allergy in children. N Engl J Med. 2012;367(3):233–43.  https://doi.org/10.1056/NEJMoa1200435.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Keet CA, Frischmeyer-Guerrerio PA, Thyagarajan A, Schroeder JT, Hamilton RG, Boden S, et al. The safety and efficacy of sublingual and oral immunotherapy for milk allergy. J Allergy Clin Immunol. 2012;129(2):448–55, 55 e1–5.  https://doi.org/10.1016/j.jaci.2011.10.023.CrossRefPubMedGoogle Scholar
  20. 20.
    Sicherer SH, Sampson HA. Food allergy. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S116–25.  https://doi.org/10.1016/j.jaci.2009.08.028.CrossRefPubMedGoogle Scholar
  21. 21.
    Canonica GW, Cox L, Pawankar R, Baena-Cagnani CE, Blaiss M, Bonini S, et al. Sublingual immunotherapy: World Allergy Organization position paper 2013 update. World Allergy Organ J. 2014;7(1):6.  https://doi.org/10.1186/1939-4551-7-6.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Didier A, Malling HJ, Worm M, Horak F, Jager S, Montagut A, et al. Optimal dose, efficacy, and safety of once-daily sublingual immunotherapy with a 5-grass pollen tablet for seasonal allergic rhinitis. J Allergy Clin Immunol. 2007;120(6):1338–45.  https://doi.org/10.1016/j.jaci.2007.07.046.CrossRefPubMedGoogle Scholar
  23. 23.
    Kildsgaard J, Brimnes J, Jacobi H, Lund K. Sublingual immunotherapy in sensitized mice. Ann Allergy Asthma Immunol. 2007;98(April):366–72.CrossRefGoogle Scholar
  24. 24.
    Malling HJ, Lund L, Ipsen H, Poulsen L. Safety and immunological changes during sublingual immunotherapy with standaradized quality grass allergen tablets. J Investig Allergol Clin Immunol. 2006;16(3):162–8.PubMedGoogle Scholar
  25. 25.
    Allam JP, Wurtzen PA, Reinartz M, Winter J, Vrtala S, Chen KW, et al. Phl p 5 resorption in human oral mucosa leads to dose-dependent and time-dependent allergen binding by oral mucosal Langerhans cells, attenuates their maturation, and enhances their migratory and TGF-beta1 and IL-10-producing properties. J Allergy Clin Immunol. 2010;126(3):638–45 e1.  https://doi.org/10.1016/j.jaci.2010.04.039.CrossRefPubMedGoogle Scholar
  26. 26.
    de Boissieu D, Dupont C. Sublingual immunotherapy for cow’s milk protein allergy: a preliminary report. Allergy. 2006;61(10):1238–9.  https://doi.org/10.1111/j.1398-9995.2006.01196.x.CrossRefPubMedGoogle Scholar
  27. 27.
    Enrique E, Pineda F, Malek T, Bartra J, Basagana M, Tella R, et al. Sublingual immunotherapy for hazelnut food allergy: a randomized, double-blind, placebo-controlled study with a standardized hazelnut extract. J Allergy Clin Immunol. 2005;116(5):1073–9.  https://doi.org/10.1016/j.jaci.2005.08.027.CrossRefPubMedGoogle Scholar
  28. 28.
    Fernandez-Rivas M, Garrido Fernandez S, Nadal JA, Diaz de Durana MD, Garcia BE, Gonzalez-Mancebo E, et al. Randomized double-blind, placebo-controlled trial of sublingual immunotherapy with a Pru p 3 quantified peach extract. Allergy. 2009;64(6):876–83.  https://doi.org/10.1111/j.1398-9995.2008.01921.x.CrossRefPubMedGoogle Scholar
  29. 29.
    Fleischer DM, Burks AW, Vickery BP, Scurlock AM, Wood RA, Jones SM, et al. Sublingual immunotherapy for peanut allergy: a randomized, double-blind, placebo-controlled multicenter trial. J Allergy Clin Immunol. 2013;131(1):119–27 e1-7.  https://doi.org/10.1016/j.jaci.2012.11.011.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chin SJ, Vickery BP, Kulis MD, Kim EH, Varshney P, Steele P, et al. Sublingual versus oral immunotherapy for peanut-allergic children: a retrospective comparison. J Allergy Clin Immunol. 2013;132(2):476–8 e2.  https://doi.org/10.1016/j.jaci.2013.02.017.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Narisety SD, Frischmeyer-Guerrerio PA, Keet CA, Gorelik M, Schroeder J, Hamilton RG, et al. A randomized, double-blind, placebo-controlled pilot study of sublingual versus oral immunotherapy for the treatment of peanut allergy. J Allergy Clin Immunol. 2015;135(5):1275–82 e1-6.  https://doi.org/10.1016/j.jaci.2014.11.005.CrossRefPubMedGoogle Scholar
  32. 32.
    Bublin M, Breiteneder H. Developing therapies for peanut allergy. Int Arch Allergy Immunol. 2014;165(3):179–94.  https://doi.org/10.1159/000369340.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cook QS, Burks AW. Peptide and recombinant allergen vaccines for food allergy. Clin Rev Allergy Immunol. 2018;55:162.  https://doi.org/10.1007/s12016-018-8673-4.CrossRefPubMedGoogle Scholar
  34. 34.
    Ali FR, Larche M. Peptide-based immunotherapy: a novel strategy for allergic disease. Expert Rev Vaccines. 2005;4(6):881–9.CrossRefGoogle Scholar
  35. 35.
    Lieberman JA, Nowak-Węgrzyn A. Vaccines and immunomodulatory therapies for food allergy. Curr Allergy Asthma Rep. 2011;12(1):55–63.  https://doi.org/10.1007/s11882-011-0232-5.CrossRefGoogle Scholar
  36. 36.
    Prickett SR, Rolland JM, O’Hehir RE. Immunoregulatory T cell epitope peptides: the new frontier in allergy therapy. Clin Exp Allergy. 2015;45(6):1015–26.  https://doi.org/10.1111/cea.12554.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Muller U, Akdis C, Fricker M, Akdis M, Blesken T, Bettens F, et al. Successful immunotherapy with T-cell epitope peptides of bee venom phospholipase A2 includes specific T cell anergy in patients allergic to bee venom. J Allergy Clin Immunol. 1998;101(6 Pt 1):747–54.CrossRefGoogle Scholar
  38. 38.
    Alexander C, Tarzi M, Larche M, Kay AB. The effect of Fel d 1-derived T-cell peptides on upper and lower airway outcome measurements in cat-allergic subjects. Allergy. 2005;60(10):1269–74.  https://doi.org/10.1111/j.1398-9995.2005.00885.x.CrossRefPubMedGoogle Scholar
  39. 39.
    Yang M, Mine Y. Novel T-cell epitopes of ovalbumin in BALB/c mouse: potential for peptide-immunotherapy. Biochem Biophys Res Commun. 2009;378(2):203–8.  https://doi.org/10.1016/j.bbrc.2008.11.037.CrossRefPubMedGoogle Scholar
  40. 40.
    Yang M, Yang C, Mine Y. Multiple T cell epitope peptides suppress allergic responses in an egg allergy mouse model by the elicitation of forkhead box transcription factor 3- and transforming growth factor-beta-associated mechanisms. Clin Exp Allergy. 2010;40(4):668–78.  https://doi.org/10.1111/j.1365-2222.2009.03442.x.CrossRefPubMedGoogle Scholar
  41. 41.
    Glaspole IN, de Leon MP, Rolland JM, O’Hehir RE. Characterization of the T-cell epitopes of a major peanut allergen, Ara h 2. Allergy. 2005;60(1):35–40.  https://doi.org/10.1111/j.1398-9995.2004.00608.x.CrossRefPubMedGoogle Scholar
  42. 42.
    Prickett SR, Voskamp AL, Dacumos-Hill A, Symons K, Rolland JM, O’Hehir RE. Ara h 2 peptides containing dominant CD4+ T-cell epitopes: candidates for a peanut allergy therapeutic. J Allergy Clin Immunol. 2011;127(3):608–15.e5.  https://doi.org/10.1016/j.jaci.2010.09.027.CrossRefPubMedGoogle Scholar
  43. 43.
    Prickett SR, Voskamp AL, Phan T, Dacumos-Hill A, Mannering SI, Rolland JM, et al. Ara h 1 CD4+ T cell epitope-based peptides: candidates for a peanut allergy therapeutic. Clin Exp Allergy. 2013;43(6):684–97.  https://doi.org/10.1111/cea.12113.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ramesh M, Yuenyongviwat A, Konstantinou GN, Lieberman J, Pascal M, Masilamani M, et al. Peanut T-cell epitope discovery: Ara h 1. J Allergy Clin Immunol. 2016;137(6):1764–71 e4.  https://doi.org/10.1016/j.jaci.2015.12.1327.CrossRefPubMedGoogle Scholar
  45. 45.
    Valenta R, Linhart B, Swoboda I, Niederberger V. Recombinant allergens for allergen-specific immunotherapy: 10 years anniversary of immunotherapy with recombinant allergens. Allergy. 2011;66(6):775–83.  https://doi.org/10.1111/j.1398-9995.2011.02565.x.CrossRefPubMedGoogle Scholar
  46. 46.
    Nowak-Wegrzyn A, Sampson HA. Future therapies for food allergies. J Allergy Clin Immunol. 2011;127(3):558–73;. quiz 74-5.  https://doi.org/10.1016/j.jaci.2010.12.1098.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Pauli G, Larsen TH, Rak S, Horak F, Pastorello E, Valenta R, et al. Efficacy of recombinant birch pollen vaccine for the treatment of birch-allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2008;122(5):951–60.  https://doi.org/10.1016/j.jaci.2008.09.017.CrossRefPubMedGoogle Scholar
  48. 48.
    Bannon GA, Cockrell G, Connaughton C, West CM, Helm R, Stanley JS, et al. Engineering, characterization and in vitro efficacy of the major peanut allergens for use in immunotherapy. Int Arch Allergy Immunol. 2001;124:70–2.CrossRefGoogle Scholar
  49. 49.
    King N, Helm R, Stanley JS, Vieths S, Luttkopf D, Hatahet L, et al. Allergenic characteristics of a modified peanut allergen. Mol Nutr Food Res. 2005;49(10):963–71.  https://doi.org/10.1002/mnfr.200500073.CrossRefPubMedGoogle Scholar
  50. 50.
    Li XM, Srivastava K, Huleatt JW, Bottomly K, Burks AW, Sampson HA. Engineered recombinant peanut protein and heat-killed Listeria monocytogenes coadministration protects against peanut-induced anaphylaxis in a murine model. J Immunol. 2003;170(6):3289–95.  https://doi.org/10.4049/jimmunol.170.6.3289.CrossRefPubMedGoogle Scholar
  51. 51.
    Li X-M, Srivastava K, Grishin A, Huang C-K, Schofield B, Burks W, et al. Persistent protective effect of heat-killed Escherichia coli producing “engineered,” recombinant peanut proteins in a murine model of peanut allergy. J Allergy Clin Immunol. 2003;112(1):159–67.  https://doi.org/10.1067/mai.2003.1622.CrossRefPubMedGoogle Scholar
  52. 52.
    Wood RA, Sicherer SH, Burks AW, Grishin A, Henning AK, Lindblad R, et al. A phase 1 study of heat/phenol-killed, E. coli-encapsulated, recombinant modified peanut proteins Ara h 1, Ara h 2, and Ara h 3 (EMP-123) for the treatment of peanut allergy. Allergy. 2013;68(6):803–8.  https://doi.org/10.1111/all.12158.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Tang D, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature. 1992;356:152.CrossRefGoogle Scholar
  54. 54.
    Keet CA, Wood RA. Emerging therapies for food allergy. J Clin Investig. 2014;124(5):1880–6.  https://doi.org/10.1172/jci72061.CrossRefPubMedGoogle Scholar
  55. 55.
    Weiss R, Scheiblhofer S, Gabler M, Ferreira F, Leitner WW, Thalhamer J. Is genetic vaccination against allergy possible? Int Arch Allergy Immunol. 2006;139(4):332–45.  https://doi.org/10.1159/000091946.CrossRefPubMedGoogle Scholar
  56. 56.
    Burks W, Kulis M, Pons L. Food allergies and hypersensitivity: a review of pharmacotherapy and therapeutic strategies. Expert Opin Pharmacother. 2008;9(7):1145–52.  https://doi.org/10.1517/14656566.9.7.1145.CrossRefPubMedGoogle Scholar
  57. 57.
    Roy K, Mao HQ, Huang SK, Leong KW. Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med. 1999;5(4):387–91.CrossRefGoogle Scholar
  58. 58.
    Li X-M, Huang C-K, Schofield B, Burks AW, Bannon G, Kim K-H, et al. Strain-dependent induction of allergic sensitization caused by peanut allergen DNA immunization in mice. J Immunol. 1999;162:3045–52.PubMedGoogle Scholar
  59. 59.
    Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol Rev. 2011;239:62–84.CrossRefGoogle Scholar
  60. 60.
    Su Y, Connolly M, Marketon A, Heiland T. CryJ-LAMP DNA vaccines for Japanese red cedar allergy induce robust Th1-type immune responses in murine model. J Immunol Res. 2016;2016:4857869.  https://doi.org/10.1155/2016/4857869.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Nakamura R, Matsuda T. Rice allergenic protein and molecular-genetic approach for hypoallergenic rice. Biosci Biotechnol Biochem. 1996;60(8):1215–21.  https://doi.org/10.1271/bbb.60.1215.CrossRefPubMedGoogle Scholar
  62. 62.
    Herman EM, Helm RM, Jung R, Kinney AJ. Genetic modification removes an immunodominant allergen from soybean. Plant Physiol. 2003;132(1):36–43.  https://doi.org/10.1104/pp.103.021865.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lorenz Y, Enrique E, Lequynh L, Fotisch K, Retzek M, Biemelt S, et al. Skin prick tests reveal stable and heritable reduction of allergenic potency of gene-silenced tomato fruits. J Allergy Clin Immunol. 2006;118(3):711–8.  https://doi.org/10.1016/j.jaci.2006.05.014.CrossRefPubMedGoogle Scholar
  64. 64.
    Burks AW. Peanut allergy. Lancet. 2008;371(9623):1538–46.  https://doi.org/10.1016/s0140-6736(08)60659-5.CrossRefPubMedGoogle Scholar
  65. 65.
    Leung DY, Sampson HA, Yunginger JW, Burks AW, Schneider LC, Wortel CH, et al. Effect of anti-IgE therapy in patients with peanut allergy. N Engl J Med. 2003;348(11):986–93.CrossRefGoogle Scholar
  66. 66.
    Lieberman JA, Chehade M. Use of omalizumab in the treatment of food allergy and anaphylaxis. Curr Allergy Asthma Rep. 2012;13(1):78–84.  https://doi.org/10.1007/s11882-012-0316-x.CrossRefGoogle Scholar
  67. 67.
    Sampson HA, Leung DY, Burks AW, Lack G, Bahna SL, Jones SM, et al. A phase II, randomized, doubleblind, parallelgroup, placebocontrolled oral food challenge trial of Xolair (omalizumab) in peanut allergy. J Allergy Clin Immunol. 2011;127(5):1309–10 e1.  https://doi.org/10.1016/j.jaci.2011.01.051.CrossRefPubMedGoogle Scholar
  68. 68.
    MacGinnitie AJ, Rachid R, Gragg H, Little SV, Lakin P, Cianferoni A, et al. Omalizumab facilitates rapid oral desensitization for peanut allergy. J Allergy Clin Immunol. 2017;139(3):873–81.e8.  https://doi.org/10.1016/j.jaci.2016.08.010.CrossRefPubMedGoogle Scholar
  69. 69.
    Begin P, Dominguez T, Wilson SP, Bacal L, Mehrotra A, Kausch B, et al. Phase 1 results of safety and tolerability in a rush oral immunotherapy protocol to multiple foods using Omalizumab. Allergy Asthma Clin Immunol. 2014;10(1):7.  https://doi.org/10.1186/1710-1492-10-7.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Nadeau KC, Schneider LC, Hoyte L, Borras I, Umetsu DT. Rapid oral desensitization in combination with omalizumab therapy in patients with cow’s milk allergy. J Allergy Clin Immunol. 2011;127(6):1622–4.  https://doi.org/10.1016/j.jaci.2011.04.009.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Wood RA, Kim JS, Lindblad R, Nadeau K, Henning AK, Dawson P, et al. A randomized, double-blind, placebo-controlled study of omalizumab combined with oral immunotherapy for the treatment of cow’s milk allergy. J Allergy Clin Immunol. 2016;137(4):1103–10.e11.  https://doi.org/10.1016/j.jaci.2015.10.005.CrossRefPubMedGoogle Scholar
  72. 72.
    Feuille E, Nowak-Wegrzyn A. Allergen-specific immunotherapies for food allergy. Allergy Asthma Immunol Res. 2018;10(3):189–206.  https://doi.org/10.4168/aair.2018.10.3.189.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Wang J. Treatment of food anaphylaxis with traditional Chinese herbal remedies: from mouse model to human clinical trials. Curr Opin Allergy Clin Immunol. 2013;13(4):386–91.  https://doi.org/10.1097/ACI.0b013e3283615bc4.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Li XM, Zhang TF, Huang CK, Srivastava K, Teper AA, Zhang L, et al. Food allergy herbal Formula-1 (FAHF-1) blocks peanut-induced anaphylaxis in a murine model. J Allergy Clin Immunol. 2001;108(4):639–46.  https://doi.org/10.1067/mai.2001.118787.CrossRefPubMedGoogle Scholar
  75. 75.
    Srivastava KD, Kattan JD, Zou ZM, Li JH, Zhang L, Wallenstein S, et al. The Chinese herbal medicine formula FAHF-2 completely blocks anaphylactic reactions in a murine model of peanut allergy. J Allergy Clin Immunol. 2005;115(1):171–8.  https://doi.org/10.1016/j.jaci.2004.10.003.CrossRefPubMedGoogle Scholar
  76. 76.
    Srivastava KD, Bardina L, Sampson HA, Li XM. Efficacy and immunological actions of FAHF-2 in a murine model of multiple food allergies. Ann Allergy Asthma Immunol. 2012;108(5):351–8. e1.  https://doi.org/10.1016/j.anai.2012.03.008.CrossRefPubMedGoogle Scholar
  77. 77.
    Wang J, Jones SM, Pongracic JA, Song Y, Yang N, Sicherer SH, et al. Safety, clinical, and immunologic efficacy of a Chinese herbal medicine (Food Allergy Herbal Formula-2) for food allergy. J Allergy Clin Immunol. 2015;136(4):962–70 e1.  https://doi.org/10.1016/j.jaci.2015.04.029.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Prescott SL, Bjorksten B. Probiotics for the prevention or treatment of allergic diseases. J Allergy Clin Immunol. 2007;120(2):255–62.  https://doi.org/10.1016/j.jaci.2007.04.027.CrossRefPubMedGoogle Scholar
  79. 79.
    Lynch S. Gut microbiota and allergic disease. Ann Am Thorac Soc. 2016;13(Supplement 1):S51–S4.  https://doi.org/10.1513/AnnalsATS.201507-451MG.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kukkonen K, Savilahti E, Haahtela T, Juntunen-Backman K, Korpela R, Poussa T, et al. Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol. 2007;119(1):192–8.  https://doi.org/10.1016/j.jaci.2006.09.009.CrossRefPubMedGoogle Scholar
  81. 81.
    Marschan E, Kuitunen M, Kukkonen K, Poussa T, Sarnesto A, Haahtela T, et al. Probiotics in infancy induce protective immune profiles that are characteristic for chronic low-grade inflammation. Clin Exp Allergy. 2008;38(4):611–8.  https://doi.org/10.1111/j.1365-2222.2008.02942.x.CrossRefPubMedGoogle Scholar
  82. 82.
    Abrahamsson TR, Jakobsson T, Bottcher MF, Fredrikson M, Jenmalm MC, Bjorksten B, et al. Probiotics in prevention of IgE-associated eczema: a double-blind, randomized, placebo-controlled trial. J Allergy Clin Immunol. 2007;119(5):1174–80.  https://doi.org/10.1016/j.jaci.2007.01.007.CrossRefPubMedGoogle Scholar
  83. 83.
    Majamaa H, Isolauri E. Probiotics: a novel approach in the management of food allergy. J Allergy Clin Immunol. 1997;99(2):179–85.CrossRefGoogle Scholar
  84. 84.
    Rosenfeldt V, Benfeldt E, Nielsen S, Michaelsen K, Jeppesen D, Valerius N, et al. Effect of probiotic Lactobacillus strains in children with atopic dermatitis. J Allergy Clin Immunol. 2003;111(2):389–95.CrossRefGoogle Scholar
  85. 85.
    Taylor AL, Dunstan JA, Prescott SL. Probiotic supplementation for the first 6 months of life fails to reduce the risk of atopic dermatitis and increases the risk of allergen sensitization in high-risk children: a randomized controlled trial. J Allergy Clin Immunol. 2007;119(1):184–91.  https://doi.org/10.1016/j.jaci.2006.08.036.CrossRefPubMedGoogle Scholar
  86. 86.
    Viljanen M, Savilahti E, Haahtela T, Juntunen-Backman K, Korpela R, Poussa T, et al. Probiotics in the treatment of atopic eczema/dermatitis syndrome in infants: a double-blind placebo-controlled trial. Allergy. 2005;60(4):494–500.  https://doi.org/10.1111/j.1398-9995.2004.00514.x.CrossRefPubMedGoogle Scholar
  87. 87.
    Hol J, van Leer EH, Elink Schuurman BE, de Ruiter LF, Samsom JN, Hop W, et al. The acquisition of tolerance toward cow’s milk through probiotic supplementation: a randomized, controlled trial. J Allergy Clin Immunol. 2008;121(6):1448–54.  https://doi.org/10.1016/j.jaci.2008.03.018.CrossRefPubMedGoogle Scholar
  88. 88.
    Berni Canani R, Nocerino R, Terrin G, Coruzzo A, Cosenza L, Leone L, et al. Effect of Lactobacillus GG on tolerance acquisition in infants with cow’s milk allergy: a randomized trial. J Allergy Clin Immunol. 2012;129(2):580–2, 2 e1-5.  https://doi.org/10.1016/j.jaci.2011.10.004.CrossRefPubMedGoogle Scholar
  89. 89.
    Berni Canani R, Nocerino R, Terrin G, Frediani T, Lucarelli S, Cosenza L, et al. Formula selection for management of children with cow’s milk allergy influences the rate of acquisition of tolerance: a prospective multicenter study. J Pediatr. 2013;163(3):771–7 e1.  https://doi.org/10.1016/j.jpeds.2013.03.008.CrossRefPubMedGoogle Scholar
  90. 90.
    Tang ML, Ponsonby AL, Orsini F, Tey D, Robinson M, Su EL, et al. Administration of a probiotic with peanut oral immunotherapy: a randomized trial. J Allergy Clin Immunol. 2015;135(3):737–44 e8.  https://doi.org/10.1016/j.jaci.2014.11.034.CrossRefPubMedGoogle Scholar
  91. 91.
    Chinthrajah RS, Hernandez JD, Boyd SD, Galli SJ, Nadeau KC. Molecular and cellular mechanisms of food allergy and food tolerance. J Allergy Clin Immunol. 2016;137(4):984–97.  https://doi.org/10.1016/j.jaci.2016.02.004.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Virkud Y, Burks AW, Steele PH, Edwards LJ, Berglund JP, Jones SM, et al. Novel baseline predictors of adverse events during oral immunotherapy in children with peanut allergy. J Allergy Clin Immunol. 2017;139(3):882–8.  https://doi.org/10.1016/j.jaci.2016.07.030.CrossRefPubMedGoogle Scholar
  93. 93.
    Vickery BP, Berglund JP, Burk CM, Fine JP, Kim EH, Kim JI, et al. Early oral immunotherapy in peanut-allergic preschool children is safe and highly effective. J Allergy Clin Immunol. 2017;139(1):173–81.  https://doi.org/10.1016/j.jaci.2016.05.027.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of North Carolina at Chapel Hill, Department of Pediatrics, Division of Allergy, Immunology, and RheumatologyChapel HillUSA
  2. 2.University of North Carolina at Chapel Hill, Department of Medicine, Division of Rheumatology, Allergy and ImmunologyChapel HillUSA

Personalised recommendations