Advertisement

Mycotoxins Occurrence, Toxicity and Detection Methods

  • Mohamed Amine Gacem
  • Aminata Ould El Hadj-Khelil
  • Badreddine Boudjemaa
  • Hiba Gacem
Chapter
  • 17 Downloads
Part of the Sustainable Agriculture Reviews book series (SARV, volume 40)

Abstract

Mycotoxins and their derivatives constitute a toxic group of bioproducts for human and animals’ health, they induce economic losses in cereals and stored food products. The knowledge of the biosynthetic mechanisms of mycotoxins are important to improve food quality. Polyketides are the first precursors, they are synthesized by a variety of multifunctional enzymes named polyketide synthases. This review discusses the occurrence of mycotoxin in food and human biological fluids, the toxicities caused in vitro and in vivo in human and animals’ organs, and finally, some conventional and recent detection methods for their detection and quantification.

Keywords

Mycotoxins Occurrence of mycotoxin Toxicities Detection methods 

References

  1. Abdallah MF, Krska R, Sulyok M (2018) Occurrence of ochratoxins, fumonisin B2, aflatoxins (B1 and B2), and other secondary fungal metabolites in dried date palm fruits from Egypt: a mini-survey. J Food Sci 83:559–564.  https://doi.org/10.1111/1750-3841.14046CrossRefPubMedGoogle Scholar
  2. Abia WA, Warth B, Sulyok M et al (2013) Bio-monitoring of mycotoxin exposure in Cameroon using a urinary multi-biomarker approach. Food Chem Toxicol 62:927–934.  https://doi.org/10.1016/j.fct.2013.10.003CrossRefPubMedGoogle Scholar
  3. Adányi N, Nagy ÁG, Takács B et al (2018) Sensitivity enhancement for mycotoxin determination by optical waveguide lightmode spectroscopy using gold nanoparticles of different size and origin. Food Chem 267:10–14.  https://doi.org/10.1016/j.foodchem.2018.04.089CrossRefPubMedGoogle Scholar
  4. Adekoya I, Njobeh P, Obadina A, Chilaka C, Okoth S, De Boevre M, De Saeger S (2017) Awareness and prevalence of mycotoxin contamination in selected nigerian fermented foods. Toxins 9:363.  https://doi.org/10.3390/toxins9110363CrossRefGoogle Scholar
  5. Adekoya I, Obadina A, Adaku CC, De Boevre M, Okoth S, De Saeger S, Njobeh P (2018) Mycobiota and co-occurrence of mycotoxins in South African maize-based opaque beer. Int J Food Microbiol 270:22–30.  https://doi.org/10.1016/j.ijfoodmicro.2018.02.001CrossRefGoogle Scholar
  6. Adgigitov F, Kosichenko LP, Popandopulo PG et al (1984) Frequency of chromosome aberrations in bone marrow of monkeys and their F1 after aflatoxin B1 injection. Exp Pathol 26:163–169CrossRefGoogle Scholar
  7. Al-Anati L, Petzinger E (2006) Immunotoxic activity of ochratoxin A. J Vet Pharmacol Ther 29:79–90.  https://doi.org/10.1111/j.1365-2885.2006.00718.xCrossRefPubMedGoogle Scholar
  8. Alexa E, Dehelean CA, Poiana MA et al (2013) The occurrence of mycotoxins in wheat from western Romania and histopathological impact as effect of feed intake. Chem Cent J 7:99.  https://doi.org/10.1186/1752-153X-7-99CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ali N, Blaszkewicz M, Degen GH (2015a) Occurrence of the mycotoxin citrinin and its metabolite dihydrocitrinone in urines of German adults. Arch Toxicol 89:573–578.  https://doi.org/10.1007/s00204-014-1363-yCrossRefPubMedGoogle Scholar
  10. Ali N, Blaszkewicz M, Mohanto NC et al (2015b) First results on citrinin biomarkers in urines from rural and urban cohorts in Bangladesh. Mycotoxin Res 31:9–16.  https://doi.org/10.1007/s12550-014-0217-zCrossRefPubMedGoogle Scholar
  11. Almeida-Ferreira GC, Barbosa-Tessmann IP, Sega R et al (2013) Occurrence of zearalenone in wheat- and corn-based products commercialized in the State of Paraná, Brazil. Braz J Microbiol 44:371–375.  https://doi.org/10.1590/S1517-83822013005000037CrossRefPubMedPubMedCentralGoogle Scholar
  12. Anthony J, Delucca JJ, Dunn LS et al (1982) Toxicity, mutagenicity and teratogenicity of brevianamide, viomellein and xanthomegnin; secondary metabolites of penicillium viridicatum. J Food Saf 4:165–168.  https://doi.org/10.1111/j.1745-4565.1982.tb00440.xCrossRefGoogle Scholar
  13. Applegate TJ, Schatzmayr G, Prickel K et al (2009) Effect of aflatoxin culture on intestinal function and nutrient loss in laying hens. Poult Sci 88:1235–1241.  https://doi.org/10.3382/ps.2008-00494CrossRefPubMedGoogle Scholar
  14. Armando MR, Pizzolitto RP, Dogi CA et al (2012) Adsorption of ochratoxin A and zearalenone by potential probiotic Saccharomyces cerevisiae strains and its relation with cell wall thickness. J Appl Microbiol 113:256–264.  https://doi.org/10.1111/j.1365-2672.2012.05331.xCrossRefPubMedGoogle Scholar
  15. Arzu Koçkaya E, Selmanoğlu G, Ozsoy N et al (2009) Evaluation of patulin toxicity in the thymus of growing male rats. Arh Hig Rada Toksikol 60:411–418.  https://doi.org/10.2478/10004-1254-60-2009-1973CrossRefPubMedGoogle Scholar
  16. Asghar MA, Iqbal J, Ahmed A et al (2014) Occurrence of aflatoxins contamination in brown rice from Pakistan. Iran J Public Health 43:291–299PubMedPubMedCentralGoogle Scholar
  17. Asghar MA, Ahmed A, Asghar MA (2018) Aflatoxin M1 in fresh milk collected from local markets of Karachi, Pakistan. Food Addit Contam Part B Surveill 11:167–174.  https://doi.org/10.1080/19393210.2018.1446459CrossRefPubMedGoogle Scholar
  18. Azri FA, Selamat J, Sukor R (2017) Electrochemical immunosensor for the detection of aflatoxin B1 in palm kernel cake and feed samples. Sensors 17:2776.  https://doi.org/10.3390/s17122776CrossRefGoogle Scholar
  19. Azri FA, Sukor R, Selamat J et al (2018) Electrochemical immunosensor for detection of aflatoxin B1 based on indirect competitive ELISA. Toxins 10:196.  https://doi.org/10.3390/toxins10050196CrossRefPubMedCentralGoogle Scholar
  20. Barrett JR (2005) Liver cancer and aflatoxin: New information from the kenyan outbreak. Environ Health Perspect 113: A837–A838.  https://doi.org/10.1289/ehp.113-a837
  21. Bárta I, Adámková M, Markarjan D et al (1984) The mutagenic activity of aflatoxin B1 in the Cricetulus griseus hamster and Macaca mulatta monkey. J Hyg Epidemiol Microbiol Immunol 28:149–159PubMedGoogle Scholar
  22. Bennett JW, Rubin PL, Lee LS et al (1979) Influence of trace elements and nitrogen sources on versicolorin production by a mutant strain of Aspergillus parasiticus. Mycopathologia 69:161–166.  https://doi.org/10.1007/BF00452829CrossRefPubMedGoogle Scholar
  23. Berntsen HF, Wigestrand MB, Bogen IL et al (2013) Mechanisms of penitrem-induced cerebellar granule neuron death in vitro: possible involvement of GABAA receptors and oxidative processes. Neurotoxicology 35:129–136.  https://doi.org/10.1016/j.neuro.2013.01.004CrossRefPubMedGoogle Scholar
  24. Berntsen HF, Bogen IL, Wigestrand MB et al (2017) The fungal neurotoxin penitrem A induces the production of reactive oxygen species in human neutrophils at submicromolar concentrations. Toxicology 392:64–70.  https://doi.org/10.1016/j.tox.2017.10.008CrossRefPubMedGoogle Scholar
  25. Bluhm BH, Kim H, Butchko RA et al (2008) Involvement of ZFR1 of Fusarium verticillioides in kernel colonization and the regulation of FST1, a putative sugar transporter gene required for fumonisin biosynthesis on maize kernels. Mol Plant Pathol 9:203–211.  https://doi.org/10.1111/j.1364-3703.2007.00458.xCrossRefPubMedPubMedCentralGoogle Scholar
  26. Bouchara JP, Hsieh HY, Croquefer S et al (2009) Development of an oligonucleotide array for direct detection of fungi in sputum samples from patients with cystic fibrosis. J Clin Microbiol 47:142–152.  https://doi.org/10.1128/JCeM.01668-08CrossRefPubMedGoogle Scholar
  27. Boudra H, Barnouin J, Dragacci S et al (2007) Aflatoxin M1 and ochratoxin A in raw bulk milk from French dairy herds. J Dairy Sci 90:3197–3201.  https://doi.org/10.3168/jds.2006-565CrossRefPubMedGoogle Scholar
  28. Bouhet S, Oswald IP (2007) The intestine as a possible target for fumonisin toxicity. Mol Nutr Food Res 51:925–931.  https://doi.org/10.1002/mnfr.200600266CrossRefPubMedGoogle Scholar
  29. Bouhet S, Hourcade E, Loiseau N et al (2004) The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells. Toxicol Sci 77:165–171.  https://doi.org/10.1093/toxsci/kfh006CrossRefPubMedGoogle Scholar
  30. Brewer JH, Thrasher JD, Straus DC et al (2013) Detection of mycotoxins in patients with chronic fatigue syndrome. Toxins 5:605–617.  https://doi.org/10.3390/toxins5040605CrossRefPubMedPubMedCentralGoogle Scholar
  31. Brinda R, Vijayanandraj S, Uma D et al (2013) Role of Adhatoda vasica (L.) Nees leaf extract in the prevention of aflatoxin-induced toxicity in Wistar rats. J Sci Food Agric 30:2743–2748.  https://doi.org/10.1002/jsfa.6093CrossRefGoogle Scholar
  32. Brown DW, Busman M, Proctor RH (2014) Fusarium verticillioides SGE1 is required for full virulence and regulates expression of protein effector and secondary metabolite biosynthetic genes. Mol Plant-Microbe Interact 27:809–823.  https://doi.org/10.1094/MPMI-09-13-0281-RCrossRefPubMedGoogle Scholar
  33. Bucci TJ, Howard PC, Tolleson WH et al (1998) Renal effects of fumonisin mycotoxins in animals. Toxicol Pathol 26:160–164.  https://doi.org/10.1177/019262339802600119CrossRefPubMedGoogle Scholar
  34. Calado T, Fernández-Cruz ML, Cabo Verde S et al (2018) Gamma irradiation effects on ochratoxin A: degradation, cytotoxicity and application in food. Food Chem 240:463–471.  https://doi.org/10.1016/j.foodchem.2017.07.136CrossRefPubMedGoogle Scholar
  35. Carlton WW, Stack ME, Eppley RM (1976) Hepatic alterations produced in mice by xanthomegnin and viomellein, metabolites of Penicillium viridicatum. Toxicol Appl Pharmacol 38:455–459.  https://doi.org/10.1016/0041-008X(76)90151-4CrossRefPubMedGoogle Scholar
  36. Celik I, Oğuz H, Demet O et al (2000) Embryotoxicity assay of aflatoxin produced by Aspergillus parasiticus NRRL 2999. Br Poult Sci 41:401–409.  https://doi.org/10.1080/713654961CrossRefPubMedGoogle Scholar
  37. Chang PK, Ehrlich KC, Yu J et al (1995) Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis. Appl Environ Microbiol 61:2372–2377CrossRefGoogle Scholar
  38. Chang PK, Ehrlich KC, Linz JE et al (1996) Characterization of the Aspergillus parasiticus niaD and niiA gene cluster. Curr Genet 30:68–75CrossRefGoogle Scholar
  39. Chaudhari M, Jayaraj R, Bhaskar AS et al (2009) Oxidative stress induction by T-2 toxin causes DNA damage and triggers apoptosis via caspase pathway in human cervical cancer cells. Toxicology 262:153–161.  https://doi.org/10.1016/j.tox.2009.06.002CrossRefPubMedGoogle Scholar
  40. Chavarría G, Granados-Chinchilla F, Alfaro-Cascante M et al (2015) Detection of aflatoxin M1 in milk, cheese and sour cream samples from Costa Rica using enzyme-assisted extraction and HPLC. Food Addit Contam Part B Surveill 8:128–135.  https://doi.org/10.1080/19393210.2015.1015176CrossRefPubMedGoogle Scholar
  41. Chen F, Luan C, Wang L et al (2017) Simultaneous determination of six mycotoxins in peanut by high-performance liquid chromatography with a fluorescence detector. J Sci Food Agric 97:1805–1810.  https://doi.org/10.1002/jsfa.7978CrossRefPubMedGoogle Scholar
  42. Ciacci-Zanella JR, Merrill AH Jr, Wang E et al (1998) Characterization of cell-cycle arrest by fumonisin B1 in CV-1 cells. Food Chem Toxicol 36:791–804.  https://doi.org/10.1016/S0278-6915(98)00034-9CrossRefPubMedGoogle Scholar
  43. Constable PD, Smith GW, Rottinghaus GE et al (2000) Ingestion of fumonisin B1-containing culture material decreases cardiac contractility and mechanical efficiency in swine. Toxicol Appl Pharmacol 162:151–160.  https://doi.org/10.1006/taap.1999.8831CrossRefPubMedGoogle Scholar
  44. Cotty PJ, Jaime-Garcia R (2007) Influences of climate on aflatoxin producing fungi and aflatoxin contamination. Int J Food Microbiol 119:109–115.  https://doi.org/10.1016/j.ijfoodmicro.2007.07.060CrossRefPubMedGoogle Scholar
  45. Cramer B, Osteresch B, Muñoz KA et al (2015) Biomonitoring using dried blood spots: detection of ochratoxin A and its degradation product 2’R-ochratoxin A in blood from coffee drinkers. Mol Nutr Food Res 59:1837–1843.  https://doi.org/10.1002/mnfr.201500220CrossRefPubMedPubMedCentralGoogle Scholar
  46. Crespo-Sempere A, Marín S, Sanchis V, Ramos AJ (2013) VeA and LaeA transcriptional factors regulate ochratoxin aA biosynthesis in Aspergillus carbonarius. Int J Food Microbiol 166:479–486.  https://doi.org/10.1016/j.ijfoodmicro.2013.07.027CrossRefPubMedGoogle Scholar
  47. Datta SC, Ghosh JJ (1981) Effect of citreoviridin, a mycotoxin from Penicillium citreoviride, on kinetic constants of acetylcholinesterase and ATPase in synaptosomes and microsomes from rat brain. Toxicon 19:555–562.  https://doi.org/10.1016/0041-0101(81)90014-3CrossRefPubMedGoogle Scholar
  48. Daxecker H, Raab M, Cichna M et al (2001) Determination of the effects of mycophenolic acid on the nucleotide pool of human peripheral blood mononuclear cells in vitro by high-performance liquid chromatography. Clin Chim Acta 310:81–87.  https://doi.org/10.1016/S0009-8981(01)00526-5CrossRefPubMedGoogle Scholar
  49. De Jesus CL, Bartley A, Welch AZ et al (2018) High incidence and levels of ochratoxin A in wines sourced from the United States. Toxins 10:1.  https://doi.org/10.3390/toxins10010001CrossRefGoogle Scholar
  50. Dehghan P, Pakshir K, Rafiei H et al (2014) Prevalence of ochratoxin a in human milk in the Khorrambid Town, Fars Province, South of Iran. Jundishapur J Microbiol 7:e11220.  https://doi.org/10.5812/jjm.11220CrossRefPubMedPubMedCentralGoogle Scholar
  51. Del Palacio A, Mionetto A, Bettucci L et al (2016) Evolution of fungal population and mycotoxins in sorghum silage. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 33:1864–1872.  https://doi.org/10.1080/19440049.2016.1244732CrossRefPubMedGoogle Scholar
  52. Devnarain N, Tiloke C, Nagiah S et al (2017) Fusaric acid induces oxidative stress and apoptosis in human cancerous oesophageal SNO cells. Toxicon 126:4–11.  https://doi.org/10.1016/j.toxicon.2016.12.006CrossRefPubMedGoogle Scholar
  53. Devreese M, De Baere S, De Backer P et al (2012) Quantitative determination of several toxicological important mycotoxins in pig plasma using multi-mycotoxin and analyte-specific high performance liquid chromatography-tandem mass spectrometric methods. J Chromatogr A 1257:74–80.  https://doi.org/10.1016/j.chroma.2012.08.008CrossRefPubMedGoogle Scholar
  54. Doi K, Uetsuka K (2014) Mechanisms of mycotoxin-induced dermal toxicity and tumorigenesis through oxidative stress-related pathways. J Toxicol Pathol 27:1–10.  https://doi.org/10.1293/tox.2013-0062CrossRefPubMedPubMedCentralGoogle Scholar
  55. Domijan AM, Peraica M, Cvjetković B et al (2005) Mould contamination and co-occurrence of mycotoxins in maize grain in Croatia. Acta Pharma 55:349–356Google Scholar
  56. Dong G, Pan Y, Wang Y et al (2018) Preparation of a broad-spectrum anti-zearalenone and its primary analogues antibody and its application in an indirect competitive enzyme-linked immunosorbent assay. Food Chem 247:8–15.  https://doi.org/10.1016/j.foodchem.2017.12.016CrossRefPubMedGoogle Scholar
  57. El Khoury R, Mathieu F, Atoui A et al (2017) Ability of soil isolated actinobacterial strains to prevent, bind and biodegrade ochratoxin A. Toxins 9:pii: E222.  https://doi.org/10.3390/toxins9070222CrossRefGoogle Scholar
  58. El Khoury R, Choque E, El Khoury A et al (2018) OTA prevention and detoxification by actinobacterial strains and activated carbon fibers: preliminary results. Toxins 24:pii: E137.  https://doi.org/10.3390/toxins10040137CrossRefGoogle Scholar
  59. El Marnissi B, Belkhou R, Morgavi DP et al (2012) Occurrence of aflatoxin M1 in raw milk collected from traditional dairies in Morocco. Food Chem Toxicol 50:2819–2821.  https://doi.org/10.1016/j.fct.2012.05.031CrossRefPubMedGoogle Scholar
  60. Emri T, Zalka A, Pócsi I (2017) Detection of transcriptionally active mycotoxin gene clusters: DNA microarray. Methods Mol Biol 1542:345–365.  https://doi.org/10.1007/978-1-4939-6707-0_23CrossRefPubMedGoogle Scholar
  61. Escrivá L, Font G, Manyes L et al (2017) Studies on the presence of mycotoxins in biological samples: an overview. Toxins 9:251.  https://doi.org/10.3390/toxins9080251CrossRefPubMedCentralGoogle Scholar
  62. Espeso EA, Arst HN Jr (2000) On the mechanism by which alkaline pH prevents expression of an acid-expressed gene. Mol Cell Biol 20:3355–3363CrossRefGoogle Scholar
  63. Esteban A, Abarca ML, Bragulat MR et al (2006) Effect of pH on ochratoxin A production by Aspergillus niger aggregate species. Food Addit Contam 23:616–622.  https://doi.org/10.1080/02652030600599124CrossRefPubMedGoogle Scholar
  64. Faisal Z, Derdák D, Lemli B et al (2018a) Interaction of 2’R-ochratoxin A with serum albumins: binding site, effects of site markers, thermodynamics, species differences of albumin-binding, and influence of albumin on its toxicity in MDCK cells. Toxins 10:pii: E353.  https://doi.org/10.3390/toxins10090353CrossRefGoogle Scholar
  65. Faisal Z, Lemli B, Szerencsés D et al (2018b) Interactions of zearalenone and its reduced metabolites α-zearalenol and β-zearalenol with serum albumins: species differences, binding sites, and thermodynamics. Mycotoxin Res 34:269–278.  https://doi.org/10.1007/s12550-018-0321-6CrossRefPubMedGoogle Scholar
  66. Fanelli F, Schmidt-Heydt M, Haidukowski M et al (2012) Influence of light on growth, conidiation and the mutual regulation of fumonisin B-2 and ochratoxin A biosynthesis by Aspergillus niger. World Mycotoxin J 5:169–176.  https://doi.org/10.3920/WMJ2011.1364CrossRefGoogle Scholar
  67. Fanelli F, Cozzi G, Raiola A et al (2017) Raisins and currants as conventional nutraceuticals in Italian market: natural occurrence of ochratoxin A. J Food Sci 82:2306–2312.  https://doi.org/10.1111/1750-3841.13854CrossRefPubMedGoogle Scholar
  68. Fang H, Wu Y, Guo J et al (2012) T-2 toxin induces apoptosis in differentiated murine embryonic stem cells through reactive oxygen species-mediated mitochondrial pathway. Apoptosis 17:895–907.  https://doi.org/10.1007/s10495-012-0724-3CrossRefPubMedGoogle Scholar
  69. Fang H, Cong L, Zhi Y et al (2016) T-2 toxin inhibits murine ES cells cardiac differentiation and mitochondrial biogenesis by ROS and p-38 MAPK-mediated pathway. Toxicol Lett 258:259–266.  https://doi.org/10.1016/j.toxlet.2016.06.2103CrossRefPubMedGoogle Scholar
  70. Ferrigo D, Raiola A, Bogialli S et al (2015) In vitro production of fumonisins by Fusarium verticillioides under oxidative stress induced by H2O2. J Agric Food Chem 63:4879–4885.  https://doi.org/10.1021/acs.jafc.5b00113CrossRefPubMedGoogle Scholar
  71. Flajs D, Peraica M (2009) Toxicological properties of citrinin. Arh Hig Rada Toksikol 60:457–464.  https://doi.org/10.2478/10004-1254-60-2009-1992CrossRefPubMedGoogle Scholar
  72. Flores-Flores ME, Lizarraga E, López de Cerain A et al (2015) Presence of mycotoxins in animal milk: a review. Food Control 53:163–176.  https://doi.org/10.1016/j.foodcont.2015.01.020CrossRefGoogle Scholar
  73. Fontelo PA, Beheler J, Bunner DL et al (1983) Detection of T-2 toxin by an improved radioimmunoassay. Appl Environ Microbiol 45:640–643CrossRefGoogle Scholar
  74. Fraeyman S, Meyer E, Devreese M et al (2018) Comparative in vitro cytotoxicity of the emerging Fusarium mycotoxins beauvericin and enniatins to porcine intestinal epithelial cells. Food Chem Toxicol 121:566–572.  https://doi.org/10.1016/j.fct.2018.09.053CrossRefPubMedGoogle Scholar
  75. Fredlund E, Thim AM, Gidlund A et al (2009) Moulds and mycotoxins in rice from the Swedish retail market. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 26:527–533.  https://doi.org/10.1080/02652030802562912CrossRefPubMedGoogle Scholar
  76. Gagliano N, Donne ID, Torri C et al (2006) Early cytotoxic effects of ochratoxin A in rat liver: a morphological, biochemical and molecular study. Toxicology 15:214–224.  https://doi.org/10.1016/j.tox.2006.06.004CrossRefGoogle Scholar
  77. Gallo A, Ferrara M, Perrone G (2017) Recent advances on the molecular aspects of ochratoxin A biosynthesis. Curr Opin Food Sci 17:49–56.  https://doi.org/10.1016/j.cofs.2017.09.011CrossRefGoogle Scholar
  78. Gammelsrud A, Solhaug A, Dendelé B et al (2012) Enniatin B-induced cell death and inflammatory responses in RAW 267.4 murine macrophages. Toxicol Appl Pharmacol 261:74–87.  https://doi.org/10.1016/j.taap.2012.03.014CrossRefPubMedGoogle Scholar
  79. Gao Y, Yang M, Peng C et al (2012) Preparation of highly specific anti-zearalenone antibodies by using the cationic protein conjugate and development of an indirect competitive enzyme-linked immunosorbent assay. Analyst 137:229–236.  https://doi.org/10.1039/c1an15487gCrossRefPubMedGoogle Scholar
  80. Gao X, Sun L, Zhang N et al (2017) Gestational zearalenone exposure causes reproductive and developmental toxicity in pregnant rats and female offspring. Toxins 9:21.  https://doi.org/10.3390/toxins9010021CrossRefPubMedCentralGoogle Scholar
  81. García-Moraleja A, Font G, Mañes J et al (2015) Analysis of mycotoxins in coffee and risk assessment in Spanish adolescents and adults. Food Chem Toxicol 86:225–233.  https://doi.org/10.1016/j.fct.2015.10.014CrossRefPubMedGoogle Scholar
  82. Garrido NS, Iha MH, Santos Ortolani MR et al (2003) Occurrence of aflatoxins M(1) and M(2) in milk commercialized in Ribeirão Preto-SP, Brazil. Food Addit Contam 20:70–73.  https://doi.org/10.1080/0265203021000035371CrossRefPubMedGoogle Scholar
  83. Gayathri L, Dhivya R, Dhanasekaran D et al (2015) Hepatotoxic effect of ochratoxin A and citrinin, alone and in combination, and protective effect of vitamin E: in vitro study in HepG2 cell. Food Chem Toxicol 83:151–163.  https://doi.org/10.1016/j.fct.2015.06.009CrossRefPubMedGoogle Scholar
  84. Gerding J, Cramer B, Humpf HU (2014) Determination of mycotoxin exposure in Germany using an LC-MS/MS multibiomarker approach. Mol Nutr Food Res 58:2358–2368.  https://doi.org/10.1002/mnfr.201400406CrossRefPubMedGoogle Scholar
  85. Gerding J, Ali N, Schwartzbord J et al (2015) A comparative study of the human urinary mycotoxin excretion patterns in Bangladesh, Germany, and Haiti using a rapid and sensitive LC-MS/MS approach. Mycotoxin Res 31:127–136.  https://doi.org/10.1007/s12550-015-0223-9CrossRefPubMedGoogle Scholar
  86. Ghali R, Khlifa KH, Ghorbel H et al (2010) Aflatoxin determination in commonly consumed foods in Tunisia. J Sci Food Agric 90:2347–2351.  https://doi.org/10.1002/jsfa.4069CrossRefPubMedGoogle Scholar
  87. Ghazi T, Nagiah S, Tiloke C et al (2017) Fusaric acid induces DNA damage and post-translational modifications of p53 in human hepatocellular carcinoma (HepG2) cells. J Cell Biochem 118:3866–3874.  https://doi.org/10.1002/jcb.26037CrossRefPubMedGoogle Scholar
  88. Giancarlo B, Elisabetta B, Edmondo C et al (2011) Determination of ochratoxin A in eggs and target tissues of experimentally drugged hens using HPLC–FLD. Food Chem 126:1278–1282.  https://doi.org/10.1016/j.foodchem.2010.11.070CrossRefGoogle Scholar
  89. Gimeno A (1979) Thin layer chromatographic determination of aflatoxins, ochratoxins, sterigmatocystin, zearalenone, citrinin, T-2 toxin, diacetoxyscirpenol, penicillic acid, patulin, and penitrem A. J Assoc Off Anal Chem 62:579–585PubMedGoogle Scholar
  90. Gökmen V, Acar J (1998) Incidence of patulin in apple juice concentrates produced in Turkey. J Chromatogr A 815:99–102.  https://doi.org/10.1016/S0021-9673(97)01280-6CrossRefPubMedGoogle Scholar
  91. Goliński P, Grabarkiewicz-Szczesna J (1984) Chemical confirmatory tests for ochratoxin A, citrinin, penicillic acid, sterigmatocystin, and zearalenone performed directly on thin layer chromatographic plates. J Assoc Off Anal Chem 67:1108–1110PubMedGoogle Scholar
  92. Gomes ES, Schuch V, de Macedo Lemos EG (2013) Biotechnology of polyketides: new breath of life for the novel antibiotic genetic pathways discovery through metagenomics. Braz J Microbiol 44:1007–1034CrossRefGoogle Scholar
  93. Greco MV, Pardo AG, Ludemann V et al (2012) Mycoflora and natural incidence of selected mycotoxins in rabbit and chinchilla feeds. Sci World J 2012:956056.  https://doi.org/10.1100/2012/956056CrossRefGoogle Scholar
  94. Greco M, Pardo A, Pose G (2015) Mycotoxigenic fungi and natural co-occurrence of mycotoxins in rainbow trout (Oncorhynchus mykiss) feeds. Toxins 7:4595–4609.  https://doi.org/10.3390/toxins7114595CrossRefPubMedPubMedCentralGoogle Scholar
  95. Haas D, Pfeifer B, Reiterich C et al (2013) Identification and quantification of fungi and mycotoxins from Pu-erh tea. Int J Food Microbiol 166:316–322.  https://doi.org/10.1016/j.ijfoodmicro.2013.07.024CrossRefPubMedGoogle Scholar
  96. Hashem A, Fathi Abd-Allah E, Sultan Al-Obeed R et al (2015) Effect of carbon, nitrogen sources and water activity on growth and ochratoxin production of Aspergillus carbonarius (Bainier) Thom. Jundishapur J Microbiol 23:e17569.  https://doi.org/10.5812/jjm.17569CrossRefGoogle Scholar
  97. Hayes AW, Williams WL (1978) Acute toxicity of aflatoxin B1 and rubratoxin B in dogs. J Environ Pathol Toxicol 1:59–70PubMedGoogle Scholar
  98. Heischmann S, Dzieciatkowska M, Hansen K et al (2017) The immunosuppressant mycophenolic acid alters nucleotide and lipid metabolism in an intestinal cell model. Sci Rep 7:45088.  https://doi.org/10.1038/srep45088CrossRefPubMedPubMedCentralGoogle Scholar
  99. Heller T, Asif AR, Petrova DT et al (2009) Differential proteomic analysis of lymphocytes treated with mycophenolic acid reveals caspase 3-induced cleavage of rho GDP dissociation inhibitor 2. Ther Drug Monit 31:211–217.  https://doi.org/10.1097/FTD.0b013e318196fb73CrossRefPubMedGoogle Scholar
  100. Henry MH, Wyatt R (2001) The toxicity of fumonisin B1, B2, and B3, individually and in combination, in chicken embryos. Poult Sci 80:401–407.  https://doi.org/10.1093/ps/80.4.401CrossRefPubMedGoogle Scholar
  101. Hernández-Meléndez D, Salas-Téllez E, Zavala-Franco A et al (2018) Inhibition effect of flower-shaped zinc oxide nanostructures on growth and aflatoxin production of a highly toxigenic strain of Aspergillus flavus link. Materials 11:1–13.  https://doi.org/10.3390/ma11081265CrossRefGoogle Scholar
  102. Hewetson JF, Pace JG, Beheler JE (1987) Detection and quantitation of T-2 mycotoxin in rat organs by radioimmunoassay. J Assoc Off Anal Chem 70:654–657PubMedGoogle Scholar
  103. Heyndrickx E, Sioen I, Huybrechts B et al (2015) Human biomonitoring of multiple mycotoxins in the Belgian population: results of the BIOMYCO study. Environ Int 84:82–89.  https://doi.org/10.1016/j.envint.2015.06.011CrossRefPubMedGoogle Scholar
  104. Hinton DM, Morrissey RE, Norred WP et al (1985) Effects of cyclopiazonic acid on the ultrastructure of rat liver. Toxicol Lett 25:211–218.  https://doi.org/10.1016/0378-4274(85)90084-0CrossRefPubMedGoogle Scholar
  105. Hodnik V, Anderluh G (2009) Toxin detection by surface plasmon resonance. Sensors 9:1339–1354.  https://doi.org/10.3390/s9031339CrossRefPubMedGoogle Scholar
  106. Hooper DG, Bolton VE, Guilford FT et al (2009) Mycotoxin detection in human samples from patients exposed to environmental molds. Int J Mol Sci 10:1465–1475.  https://doi.org/10.3390/ijms10041465CrossRefPubMedPubMedCentralGoogle Scholar
  107. Hossain MZ, Maragos CM (2018) Gold nanoparticle-enhanced multiplexed imaging surface plasmon resonance (iSPR) detection of Fusarium mycotoxins in wheat. Biosens Bioelectron 101:245–252.  https://doi.org/10.1016/j.bios.2017.10.033CrossRefPubMedGoogle Scholar
  108. Hossain MZ, McCormick SP, Maragos CM (2018) An imaging surface plasmon resonance biosensor assay for the detection of T-2 toxin and masked T-2 toxin-3-glucoside in wheat. Toxins 10:119.  https://doi.org/10.3390/toxins10030119CrossRefPubMedCentralGoogle Scholar
  109. Hou H, Qu X, Li Y et al (2015) Binding of citreoviridin to human serum albumin: multispectroscopic and molecular docking. Biomed Res Int 2015:162391.  https://doi.org/10.1155/2015/162391CrossRefPubMedPubMedCentralGoogle Scholar
  110. Huang A, Li JW, Shen ZQ et al (2006) High-throughput identification of clinical pathogenic fungi by hybridization to an oligonucleotide microarray. J Clin Microbiol 44:3299–3305.  https://doi.org/10.1128/JCM.00417-06CrossRefPubMedPubMedCentralGoogle Scholar
  111. Huffman J, Gerber R, Du L (2010) Recent advancements in the biosynthetic mechanisms for polyketide-derived mycotoxins. Biopolymers 93:764–776.  https://doi.org/10.1002/bip.21483CrossRefPubMedPubMedCentralGoogle Scholar
  112. Hymery N, Masson F, Barbier G et al (2014) Cytotoxicity and immunotoxicity of cyclopiazonic acid on human cells. Toxicol In Vitro 28:940–947.  https://doi.org/10.1016/j.tiv.2014.04.003CrossRefPubMedGoogle Scholar
  113. Iacumin L, Chiesa L, Boscolo D et al (2009) Moulds and ochratoxin A on surfaces of artisanal and industrial dry sausages. Food Microbiol 26:65–70.  https://doi.org/10.1016/j.fm.2008.07.006CrossRefPubMedGoogle Scholar
  114. Ikegwuonu FI (1983) The neurotoxicity of aflatoxin B1 in the rat. Toxicology 28:247–259.  https://doi.org/10.1016/0300-483X(83)90121-XCrossRefPubMedGoogle Scholar
  115. Ivanova L, Egge-Jacobsen WM, Solhaug A et al (2012) Lysosomes as a possible target of enniatin B-induced toxicity in Caco-2 cells. Chem Res Toxicol 25:1662–1674.  https://doi.org/10.1021/tx300114xCrossRefPubMedGoogle Scholar
  116. Jaskiewicz K, Close PM, Thiel PG et al (1988) Preliminary studies on toxic effects of cyclopiazonic acid alone and in combination with aflatoxin B1 in non-human primates. Toxicology 52:297–307.  https://doi.org/10.1016/0300-483X(88)90134-5CrossRefPubMedGoogle Scholar
  117. Jayashree T, Subramanyam C (2000) Oxidative stress as a prerequisite for aflatoxin production by Aspergillus parasiticus. Free Radic Biol Med 29:981–985.  https://doi.org/10.1016/S0891-5849(00)00398-1CrossRefPubMedGoogle Scholar
  118. Jia Z, Liu M, Qu Z et al (2014) Toxic effects of zearalenone on oxidative stress, inflammatory cytokines, biochemical and pathological changes induced by this toxin in the kidney of pregnant rats. Environ Toxicol Pharmacol 37:580–591.  https://doi.org/10.1016/j.etap.2014.01.010CrossRefPubMedGoogle Scholar
  119. Jia Z, Yin S, Liu M et al (2015) Modified halloysite nanotubes and the alleviation of kidney damage induced by dietary zearalenone in swine. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32:1312–1321.  https://doi.org/10.1080/19440049.2015.1048748CrossRefPubMedGoogle Scholar
  120. Jiang J, Yun Y, Liu Y et al (2012a) FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum. Fungal Genet Biol 49:653–662.  https://doi.org/10.1016/j.fgb.2012.06.005CrossRefPubMedGoogle Scholar
  121. Jiang SZ, Yang ZB, Yang WR et al (2012b) Effect on hepatonephric organs, serum metabolites and oxidative stress in post-weaning piglets fed purified zearalenone-contaminated diets with or without Calibrin-Z. J Anim Physiol Anim Nutr 96:1147–1156.  https://doi.org/10.1111/j.1439-0396.2011.01233.xCrossRefGoogle Scholar
  122. Jiménez M, Máñez M, Hernández E (1996) Influence of water activity and temperature on the production of zearalenone in corn by three Fusarium species. Int J Food Microbiol 29:417–421.  https://doi.org/10.1016/0168-1605(95)00073-9CrossRefPubMedGoogle Scholar
  123. Jonsson M, Jestoi M, Anthoni M et al (2016) Fusarium mycotoxin enniatin B: cytotoxic effects and changes in gene expression profile. Toxicol In Vitro 34:309–320.  https://doi.org/10.1016/j.tiv.2016.04.017CrossRefPubMedGoogle Scholar
  124. Joshi S, Segarra-Fas A, Peters J et al (2016) Multiplex surface plasmon resonance biosensing and its transferability towards imaging nanoplasmonics for detection of mycotoxins in barley. Analyst 141:1307–1318.  https://doi.org/10.1039/C5AN02512ECrossRefPubMedGoogle Scholar
  125. Juan C, Pena A, Lino C et al (2008) Levels of ochratoxin A in wheat and maize bread from the central zone of Portugal. Int J Food Microbiol 127:284–289.  https://doi.org/10.1016/j.ijfoodmicro.2008.07.018CrossRefPubMedGoogle Scholar
  126. Juan-García A, Manyes L, Ruiz MJ et al (2013) Involvement of enniatins-induced cytotoxicity in human HepG2 cells. Toxicol Lett 218:166–173.  https://doi.org/10.1016/j.toxlet.2013.01.014CrossRefPubMedGoogle Scholar
  127. Juan-García A, Ruiz MJ, Font G et al (2015) Enniatin A1, enniatin B1 and beauvericin on HepG2: evaluation of toxic effects. Food Chem Toxicol 84:188–196.  https://doi.org/10.1016/j.fct.2015.08.030CrossRefPubMedGoogle Scholar
  128. Kachapulula PW, Akello J, Bandyopadhyay R et al (2018) Aflatoxin contamination of dried insects and fish in Zambia. J Food Prot 81:1508–1518.  https://doi.org/10.4315/0362-028X.JFP-17-527CrossRefPubMedGoogle Scholar
  129. Kapetanakou AE, Panagou EZ, Gialitaki M et al (2009) Evaluating the combined effect of water activity, pH and temperature on ochratoxin A production by Aspergillus ochraceus and Aspergillus carbonarius οn culture medium and Corinth raisins. Food Control 20:725–732.  https://doi.org/10.1016/j.foodcont.2008.09.008CrossRefGoogle Scholar
  130. Katerere DR, Stockenström S, Thembo KM et al (2007) Investigation of patulin contamination in apple juice sold in retail outlets in Italy and South Africa. Food Addit Contam 24:630–634.  https://doi.org/10.1080/02652030601137668CrossRefPubMedGoogle Scholar
  131. Kaufman SS, Tuma DJ, Park JH et al (1988) Effects of cytochalasin B on the synthesis and secretion of plasma proteins by developing rat liver. J Pediatr Gastroenterol Nutr 7:107–114CrossRefGoogle Scholar
  132. Kaymak T, Koca E, Atak M et al (2018) Determination of aflatoxins and ochratoxin A in traditional turkish cereal-based fermented food by multi-affinity column cleanup and LC fluorescence detection: single-laboratory validation. J AOAC Int 102(1):156–163.  https://doi.org/10.5740/jaoacint.17-0490CrossRefGoogle Scholar
  133. Keller NP, Hohn TM (1997) Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21:17–29.  https://doi.org/10.1006/fgbi.1997.0970CrossRefPubMedGoogle Scholar
  134. Khanafari A, Soudi H, Miraboulfathi M et al (2007) An in vitro investigation of aflatoxin B1 biological control by Lactobacillus plantarum. Pak J Biol Sci 10:2553–2556.  https://doi.org/10.3923/pjbs.2007.2553.255CrossRefPubMedGoogle Scholar
  135. Kim HK, Lee S, Jo SM et al (2013) Functional roles of FgLaeA in controlling secondary metabolism, sexual development, and virulence in Fusarium graminearum. PLoS One 8:e68441.  https://doi.org/10.1371/journal.pone.0068441CrossRefPubMedPubMedCentralGoogle Scholar
  136. Klarić MS, Zelježić D, Rumora L et al (2012) A potential role of calcium in apoptosis and aberrant chromatin forms in porcine kidney PK15 cells induced by individual and combined ochratoxin a and citrinin. Arch Toxicol 86:97–107.  https://doi.org/10.1007/s00204-011-0735-9CrossRefPubMedGoogle Scholar
  137. Kolber MA, Broschat KO, Landa-Gonzalez B (1990) Cytochalasin B induces cellular DNA fragmentation. FASEB J 4:3021–3027.  https://doi.org/10.1096/fasebj.4.12.2394319CrossRefPubMedGoogle Scholar
  138. Kolf-Clauw M, Sassahara M, Lucioli J et al (2013) The emerging mycotoxin, enniatin B1, down-modulates the gastrointestinal toxicity of T-2 toxin in vitro on intestinal epithelial cells and ex vivo on intestinal explants. Arch Toxicol 87:2233–2241.  https://doi.org/10.1007/s00204-013-1067-8CrossRefPubMedGoogle Scholar
  139. Kollia E, Kanapitsas A, Markaki P (2014) Occurrence of aflatoxin B1 and ochratoxin A in dried vine fruits from Greek market. Food Addit Contam Part B Surveill 7:11–16.  https://doi.org/10.1080/19393210.2013.825647CrossRefPubMedGoogle Scholar
  140. Kong WJ, Liu SY, Qiu F et al (2013) Simultaneous multi-mycotoxin determination in nutmeg by ultrasound-assisted solid-liquid extraction and immunoaffinity column clean-up coupled with liquid chromatography and on-line post-column photochemical derivatization-fluorescence detection. Analyst 138:2729–2739.  https://doi.org/10.1039/C3AN00059ACrossRefPubMedGoogle Scholar
  141. Koraïchi F, Inoubli L, Lakhdari N et al (2013) Neonatal exposure to zearalenone induces long term modulation of ABC transporter expression in testis. Toxicology 310:29–38.  https://doi.org/10.1016/j.tox.2013.05.002CrossRefPubMedGoogle Scholar
  142. Lee S, Chu FS (1981) Radioimmunoassay of T-2 toxin in biological fluids. J Assoc Off Anal Chem 64:684–688PubMedGoogle Scholar
  143. Lee SH, Lee J, Lee S et al (2009) GzSNF1 is required for normal sexual and asexual development in the ascomycete Gibberella zeae. Eukaryot Cell 8:116–127.  https://doi.org/10.1128/EC.00176-08CrossRefPubMedGoogle Scholar
  144. Li Y, Zhang B, He X et al (2014) Analysis of individual and combined effects of ochratoxin A and zearalenone on HepG2 and KK-1 cells with mathematical models. Toxins 6:1177–1192.  https://doi.org/10.3390/toxins6041177CrossRefPubMedPubMedCentralGoogle Scholar
  145. Li H, Xing L, Zhang M et al (2018) The toxic effects of aflatoxin B1 and aflatoxin M1 on kidney through regulating L-proline and downstream apoptosis. Biomed Res Int 2018:9074861.  https://doi.org/10.1155/2018/9074861CrossRefPubMedPubMedCentralGoogle Scholar
  146. Limonciel A, Jennings P (2014) A review of the evidence that ochratoxin A is an Nrf2 inhibitor: implications for nephrotoxicity and renal carcinogenicity. Toxins 6:371–379.  https://doi.org/10.3390/toxins6010371CrossRefPubMedPubMedCentralGoogle Scholar
  147. Liu MT, Ram BP, Hart LP et al (1985) Indirect enzyme-linked immunosorbent assay for the mycotoxin zearalenone. Appl Environ Microbiol 50:332–336CrossRefGoogle Scholar
  148. Liu J, Wang L, Guo X et al (2014a) The role of mitochondria in T-2 toxin-induced human chondrocytes apoptosis. PLoS One 9:e108394.  https://doi.org/10.1371/journal.pone.0108394CrossRefPubMedPubMedCentralGoogle Scholar
  149. Liu M, Gao R, Meng Q et al (2014b) Toxic effects of maternal zearalenone exposure on intestinal oxidative stress, barrier function, immunological and morphological changes in rats. PLoS One 9:e106412.  https://doi.org/10.1371/journal.pone.0106412CrossRefPubMedPubMedCentralGoogle Scholar
  150. Liu M, Zhu D, Guo T et al (2018) Toxicity of zearalenone on the intestines of pregnant sows and their offspring and alleviation with modified halloysite nanotubes. J Sci Food Agric 98:698–706.  https://doi.org/10.1002/jsfa.8517CrossRefPubMedGoogle Scholar
  151. Loiseau N, Debrauwer L, Sambou T et al (2007) Fumonisin B1 exposure and its selective effect on porcine jejunal segment: sphingolipids, glycolipids and trans-epithelial passage disturbance. Biochem Pharmacol 74:144–152.  https://doi.org/10.1016/j.bcp.2007.03.031CrossRefPubMedGoogle Scholar
  152. Lu L, Gunasekaran S (2019) Dual-channel ITO-microfluidic electrochemical immunosensor for simultaneous detection of two mycotoxins. Talanta 194:709–716.  https://doi.org/10.1016/j.talanta.2018.10.091CrossRefPubMedGoogle Scholar
  153. Ma L, Wang J, Zhang Y (2017) Probing the characterization of the interaction of aflatoxins B1 and G1 with calf thymus DNA in vitro. Toxins 9:pii: E209.  https://doi.org/10.3390/toxins9070209CrossRefGoogle Scholar
  154. Ma S, Zhao Y, Sun J et al (2018) miR449a/SIRT1/PGC-1α is necessary for mitochondrial biogenesis induced by T-2 toxin. Front Pharmacol 8:954.  https://doi.org/10.3389/fphar.2017.00954CrossRefPubMedPubMedCentralGoogle Scholar
  155. Magnussen A, Parsi MA (2013) Aflatoxins, hepatocellular carcinoma and public health. World J Gastroenterol 19:1508–1512.  https://doi.org/10.3748/wjg.v19.i10.1508CrossRefPubMedPubMedCentralGoogle Scholar
  156. Majer-Baranyi K, Zalán Z, Mörtl M et al (2016) Optical waveguide lightmode spectroscopy technique-based immunosensor development for aflatoxin B1 determination in spice paprika samples. Food Chem 211:972–977.  https://doi.org/10.1016/j.foodchem.2016.05.089CrossRefPubMedGoogle Scholar
  157. Makowska K, Obremski K, Gonkowski S (2018) The impact of T-2 toxin on vasoactive intestinal polypeptide-like immunoreactive (VIP-LI) nerve structures in the wall of the porcine stomach and duodenum. Toxins 10:138.  https://doi.org/10.3390/toxins10040138CrossRefPubMedCentralGoogle Scholar
  158. Makun HA, Dutton MF, Njobeh PB et al (2011) Natural multi-occurrence of mycotoxins in rice from Niger State, Nigeria. Mycotoxin Res 27:97–104.  https://doi.org/10.1007/s12550-010-0080-5CrossRefPubMedPubMedCentralGoogle Scholar
  159. Malir F, Ostry V, Pfohl-Leszkowicz A et al (2014) Transfer of ochratoxin A into tea and coffee beverages. Toxins 6:3438–3453.  https://doi.org/10.3390/toxins6123438CrossRefPubMedPubMedCentralGoogle Scholar
  160. Mallebrera B, Juan-Garcia A, Font G et al (2016) Mechanisms of beauvericin toxicity and antioxidant cellular defense. Toxicol Lett 246:28–34.  https://doi.org/10.1016/j.toxlet.2016.01.013CrossRefPubMedGoogle Scholar
  161. Manyes L, Escrivá L, Ruiz MJ et al (2018) Beauvericin and enniatin B effects on a human lymphoblastoid Jurkat T-cell model. Food Chem Toxicol 115:127–135.  https://doi.org/10.1016/j.fct.2018.03.008CrossRefPubMedGoogle Scholar
  162. Maresca M, Mahfoud R, Pfohl-Leszkowicz A et al (2001) The mycotoxin ochratoxin A alters intestinal barrier and absorption functions but has no effect on chloride secretion. Toxicol Appl Pharmacol 176:54–63.  https://doi.org/10.1006/taap.2001.9254CrossRefPubMedGoogle Scholar
  163. Marin DE, Braicu C, Gras MA et al (2017) Low level of ochratoxin A affects genome-wide expression in kidney of pig. Toxicon 136:67–77.  https://doi.org/10.1016/j.toxicon.2017.07.004CrossRefPubMedGoogle Scholar
  164. Massey TE, Smith GB, Tam AS (2000) Mechanisms of aflatoxin B1 lung tumorigenesis. Exp Lung Res 26:673–683.  https://doi.org/10.1080/01902140150216756CrossRefPubMedGoogle Scholar
  165. Mata AT, Ferreira JP, Oliveira BR et al (2015) Bottled water: analysis of mycotoxins by LC-MS/MS. Food Chem 176:455–464.  https://doi.org/10.1016/j.foodchem.2014.12.088CrossRefPubMedGoogle Scholar
  166. Mateo R, Medina A, Mateo EM et al (2007) An overview of ochratoxin A in beer and wine. Int J Food Microbiol 20:79–83.  https://doi.org/10.1016/j.ijfoodmicro.2007.07.029CrossRefGoogle Scholar
  167. Matumba LU, Van Poucke CU, Biswick T et al (2014) A limited survey of mycotoxins in traditional maize based opaque beers in Malawi. Food Control 36:253–256.  https://doi.org/10.1016/j.foodcont.2013.08.032CrossRefGoogle Scholar
  168. Mayura K, Smith EE, Clement BA et al (1987) Developmental toxicity of diacetoxyscirpenol in the mouse. Toxicology 45:245–255.  https://doi.org/10.1016/0300-483X(87)90016-3CrossRefPubMedGoogle Scholar
  169. Medina A, González G, Sáez JM et al (2004) Bee pollen, a substrate that stimulates ochratoxin A production by Aspergillus ochraceus Wilh. Syst Appl Microbiol 27:261–267.  https://doi.org/10.1078/072320204322881880CrossRefPubMedGoogle Scholar
  170. Medina A, Mateo EM, Valle-Algarra FM et al (2008) Influence of nitrogen and carbon sources on the production of ochratoxin A by ochratoxigenic strains of Aspergillus spp. isolated from grapes. Int J Food Microbiol 122:93–99.  https://doi.org/10.1016/j.ijfoodmicro.2007.11.055CrossRefPubMedGoogle Scholar
  171. Medina A, Schmidt-Heydt M, Cárdenas-Chávez DL et al (2013) Integrating toxin gene expression, growth and fumonisin B1 and B2 production by a strain of Fusarium verticillioides under different environmental factors. J R Soc Interface 10:20130320.  https://doi.org/10.1098/rsif.2013.0320CrossRefPubMedPubMedCentralGoogle Scholar
  172. Mehrzad J, Malvandi AM, Alipour M et al (2017) Environmentally relevant level of aflatoxin B1 elicits toxic pro-inflammatory response in murine CNS-derived cells. Toxicol Lett 279:96–106.  https://doi.org/10.1016/j.toxlet.2017.07.902CrossRefPubMedGoogle Scholar
  173. Merhej J, Richard-Forget F, Barreau C (2011) The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum. Fungal Genet Biol 48:275–284.  https://doi.org/10.1016/j.fgb.2010.11.008CrossRefPubMedGoogle Scholar
  174. Min K, Shin Y, Son H et al (2012) Functional analyses of the nitrogen regulatory gene areA in Gibberella zeae. FEMS Microbiol Lett 334:66–73.  https://doi.org/10.1111/j.1574-6968.2012.02620.xCrossRefPubMedGoogle Scholar
  175. Minervini F, Dell’Aquila ME (2008) Zearalenone and reproductive function in farm animals. Int J Mol Sci 9:2570–2584.  https://doi.org/10.3390/ijms9122570CrossRefPubMedPubMedCentralGoogle Scholar
  176. Minervini F, Fornelli F, Flynn KM (2004) Toxicity and apoptosis induced by the mycotoxins nivalenol, deoxynivalenol and fumonisin B1 in a human erythroleukemia cell line. Toxicol In Vitro 18:21–28.  https://doi.org/10.1016/S0887-2333(03)00130-9CrossRefPubMedGoogle Scholar
  177. Mogensen JM, Nielsen KF, Samson RA et al (2009) Effect of temperature and water activity on the production of fumonisins by Aspergillus niger and different Fusarium species. BMC Microbiol 9:281.  https://doi.org/10.1186/1471-2180-9-281CrossRefPubMedPubMedCentralGoogle Scholar
  178. Montani ML, Vaamonde G, Resnik SL et al (1988) Influence of water activity and temperature on the accumulation of zearalenone in corn. Int J Food Microbiol 6:1–8.  https://doi.org/10.1016/0168-1605(88)90078-5CrossRefPubMedGoogle Scholar
  179. Moye-Rowley WS (2003) Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences. Eukaryot Cell 2:381–389.  https://doi.org/10.1128/EC.2.3.381-389.2003CrossRefPubMedPubMedCentralGoogle Scholar
  180. Mudge DW, Atcheson BA, Taylor PJ et al (2004) Severe toxicity associated with a markedly elevated mycophenolic acid free fraction in a renal transplant recipient. Ther Drug Monit 26:453–455CrossRefGoogle Scholar
  181. Mudili V, Siddaih CN, Nagesh M et al (2014) Mould incidence and mycotoxin contamination in freshly harvested maize kernels originated from India. J Sci Food Agric 94:2674–2683.  https://doi.org/10.1002/jsfa.6608CrossRefPubMedGoogle Scholar
  182. Mupunga I, Lebelo SL, Mngqawa P et al (2014) Natural occurrence of aflatoxins in peanuts and peanut butter from Bulawayo, Zimbabwe. J Food Prot 77:1814–1818.  https://doi.org/10.4315/0362-028X.JFP-14-129CrossRefPubMedGoogle Scholar
  183. Niehaus WG Jr, Jiang WP (1989) Nitrate induces enzymes of the mannitol cycle and suppresses versicolorin synthesis in Aspergillus parasiticus. Mycopathologia 107:131–137.  https://doi.org/10.1007/BF00707550CrossRefPubMedGoogle Scholar
  184. Niide O, Suzuki Y, Yoshimaru T et al (2006) Fungal metabolite gliotoxin blocks mast cell activation by a calcium- and superoxide-dependent mechanism: implications for immunosuppressive activities. Clin Immunol 118:108–116.  https://doi.org/10.1016/j.clim.2005.08.012CrossRefPubMedGoogle Scholar
  185. Nishie K, Cole RJ, Dorner JW (1985) Toxicity and neuropharmacology of cyclopiazonic acid. Food Chem Toxicol 23:831–839.  https://doi.org/10.1016/0278-6915(85)90284-4CrossRefPubMedGoogle Scholar
  186. Nishie K, Cole RJ, Dorner JW (1988) Toxicity of citreoviridin. Res Commun Chem Pathol Pharmacol 59:31–52PubMedGoogle Scholar
  187. Niu C, Payne GA, Woloshuk CP (2015) Transcriptome changes in Fusarium verticillioides caused by mutation in the transporter-like gene FST1. BMC Microbiol 15:90.  https://doi.org/10.1186/s12866-015-0427-3CrossRefPubMedPubMedCentralGoogle Scholar
  188. Njoroge SM, Matumba L, Kanenga K et al (2016) A case for regular aflatoxin monitoring in peanut butter in sub-Saharan Africa: lessons from a 3-year survey in Zambia. J Food Prot 79:795–800.  https://doi.org/10.4315/0362-028X.JFP-15-542CrossRefPubMedGoogle Scholar
  189. Nkwe DO, Taylor JE, Siame BA (2005) Fungi, aflatoxins, fumonisin Bl and zearalenone contaminating sorghum-based traditional malt, wort and beer in Botswana. Mycopathologia 160:177–186.  https://doi.org/10.1007/s11046-005-6867-9CrossRefPubMedGoogle Scholar
  190. O’Brian GR, Georgianna DR, Wilkinson JR et al (2007) The effect of elevated temperature on gene transcription and aflatoxin biosynthesis. Mycologia 99:232–239CrossRefGoogle Scholar
  191. Okutan H, Aydin G, Ozcelik N (2004) Protective role of melatonin in ochratoxin a toxicity in rat heart and lung. J Appl Toxicol 24:505–512.  https://doi.org/10.1002/jat.1010CrossRefPubMedGoogle Scholar
  192. Omar SS (2016) Aflatoxin M1 levels in raw milk, pasteurised milk and infant formula. Ital J Food Saf 5:5788.  https://doi.org/10.4081/ijfs.2016.5788CrossRefPubMedPubMedCentralGoogle Scholar
  193. Orti DL, Hill RH Jr, Liddle JA et al (1986) High performance liquid chromatography of mycotoxin metabolites in human urine. J Anal Toxicol 100:41–45CrossRefGoogle Scholar
  194. Osteresch B, Viegas S, Cramer B et al (2017) Multi-mycotoxin analysis using dried blood spots and dried serum spots. Anal Bioanal Chem 409:3369–3382.  https://doi.org/10.1007/s00216-017-0279-9CrossRefPubMedPubMedCentralGoogle Scholar
  195. Osweiler GD, Ross PF, Wilson TM et al (1992) Characterization of an epizootic of pulmonary edema in swine associated with fumonisin in corn screenings. J Vet Diagn Investig 4:53–59.  https://doi.org/10.1177/104063879200400112CrossRefGoogle Scholar
  196. Owino JH, Arotiba OA, Hendricks N et al (2008) Electrochemical immunosensor based on polythionine/gold nanoparticles for the determination of aflatoxin B1. Sensors 8:8262–8274.  https://doi.org/10.3390/s8128262CrossRefPubMedGoogle Scholar
  197. Ozsoy N, Selmanoğlu G, Koçkaya EA et al (2008) Effect of patulin on the interdigitating dendritic cells (IDCs) of rat thymus. Cell Biochem Funct 26:192–196.  https://doi.org/10.1002/cbf.1431CrossRefPubMedGoogle Scholar
  198. Palabiyik SS, Erkekoglu P, Zeybek ND et al (2013) Protective effect of lycopene against ochratoxin A induced renal oxidative stress and apoptosis in rats. Exp Toxicol Pathol 65:853–861.  https://doi.org/10.1016/j.etp.2012.12.004CrossRefPubMedGoogle Scholar
  199. Paradells S, Rocamonde B, Llinares C et al (2015) Neurotoxic effects of ochratoxin A on the subventricular zone of adult mouse brain. J Appl Toxicol 35:737–751.  https://doi.org/10.1002/jat.3061CrossRefPubMedGoogle Scholar
  200. Passamani FR, Hernandes T, Lopes NA et al (2014) Effect of temperature, water activity, and pH on growth and production of ochratoxin A by Aspergillus niger and Aspergillus carbonarius from Brazilian grapes. J Food Prot 77:1947–1952.  https://doi.org/10.4315/0362-028X.JFP-13-495CrossRefPubMedGoogle Scholar
  201. Patterson DS, Roberts BA (1979) Mycotoxins in animal feedstuffs: sensitive thin layer chromatographic detection of aflatoxin, ochratoxin A, sterigmatocystin, zearalenone, and T-2 toxin. J Assoc Off Anal Chem 62:1265–1267PubMedGoogle Scholar
  202. Pena A, Seifrtová M, Lino C et al (2006) Estimation of ochratoxin A in portuguese population: new data on the occurrence in human urine by high performance liquid chromatography with fluorescence detection. Food Chem Toxicol 44:1449–1454.  https://doi.org/10.1016/j.fct.2006.04.017CrossRefPubMedGoogle Scholar
  203. Peñalva MA, Tilburn J, Bignell E et al (2008) Ambient pH gene regulation in fungi: making connections. Trends Microbiol 16:291–300.  https://doi.org/10.1016/j.tim.2008.03.006CrossRefPubMedGoogle Scholar
  204. Peng KY, Chen CY (2009) Prevalence of aflatoxin M1 in milk and its potential liver cancer risk in Taiwan. J Food Prot 72:1025–1029.  https://doi.org/10.4315/0362-028X-72.5.1025CrossRefPubMedGoogle Scholar
  205. Peraica M, Radić B, Lucić A et al (1999) Toxic effects of mycotoxins in humans. Bull World Health Organ 77:754–766. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2557730/pdf/10534900.pdfPubMedPubMedCentralGoogle Scholar
  206. Perši N, Pleadin J, Kovačević D et al (2014) Ochratoxin A in raw materials and cooked meat products made from OTA-treated pigs. Meat Sci 96:203–210.  https://doi.org/10.1016/j.meatsci.2013.07.005CrossRefPubMedGoogle Scholar
  207. Pirinçci ŞŞ, Ertekin Ö, Laguna DE et al (2018) Label-free QCM immunosensor for the detection of ochratoxin A. Sensors 18:1161.  https://doi.org/10.3390/s18041161CrossRefGoogle Scholar
  208. Pizzolato Montanha F, Anater A, Burchard JF et al (2018) Mycotoxins in dry-cured meats: a review. Food Chem Toxicol 111:494–502.  https://doi.org/10.1016/j.fct.2017.12.008CrossRefPubMedGoogle Scholar
  209. Pleadin J, Zadravec M, Brnić D et al (2017) Moulds and mycotoxins detected in the regional speciality fermented sausage ‘slavonski kulen’ during a 1-year production period. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 34:282–290.  https://doi.org/10.1080/19440049.2016.1266395CrossRefPubMedGoogle Scholar
  210. Poapolathep A, Poapolathep S, Klangkaew N et al (2008) Detection of deoxynivalenol contamination in wheat products in Thailand. J Food Prot 71:1931–1933.  https://doi.org/10.4315/0362-028X-71.9.1931CrossRefPubMedGoogle Scholar
  211. Poór M, Lemli B, Bálint M et al (2015) Interaction of citrinin with human serum albumin. Toxins 7:5155–5166.  https://doi.org/10.3390/toxins7124871CrossRefPubMedPubMedCentralGoogle Scholar
  212. Poór M, Kunsági-Máté S, Bálint M et al (2017a) Interaction of mycotoxin zearalenone with human serum albumin. J Photochem Photobiol B 170:16–24.  https://doi.org/10.1016/j.jphotobiol.2017.03.016CrossRefPubMedGoogle Scholar
  213. Poór M, Bálint M, Hetényi C et al (2017b) Investigation of non-covalent interactions of aflatoxins (B1, B2, G1, G2, and M1) with serum albumin. Toxins 9:339.  https://doi.org/10.3390/toxins9110339CrossRefPubMedCentralGoogle Scholar
  214. Poostforoushfard A, Pishgar AR, Berizi E et al (2017) Patulin contamination in apple products marketed in Shiraz, Southern Iran. Curr Med Mycol 3:32–35.  https://doi.org/10.29252/cmm.3.4.32CrossRefPubMedPubMedCentralGoogle Scholar
  215. Porter JK, Bacon CW, Wray EM et al (1995) Fusaric acid in Fusarium moniliforme cultures, corn, and feeds toxic to livestock and the neurochemical effects in the brain and pineal gland of rats. Nat Toxins 3:91–100.  https://doi.org/10.1002/nt.2620030206CrossRefPubMedGoogle Scholar
  216. Prosperini A, Juan-García A, Font G et al (2013) Beauvericin-induced cytotoxicity via ROS production and mitochondrial damage in Caco-2 cells. Toxicol Lett 222:204–211.  https://doi.org/10.1016/j.toxlet.2013.07.005CrossRefPubMedGoogle Scholar
  217. Raab M, Daxecker H, Karimi A et al (2001) In vitro effects of mycophenolic acid on the nucleotide pool and on the expression of adhesion molecules of human umbilical vein endothelial cells. Clin Chim Acta 310:89–98.  https://doi.org/10.1016/S0009-8981(01)00527-7CrossRefPubMedGoogle Scholar
  218. Rahimi E, Bonyadian M, Rafei M et al (2010) Occurrence of aflatoxin M1 in raw milk of five dairy species in Ahvaz, Iran. Food Chem Toxicol 48:129–131.  https://doi.org/10.1016/j.fct.2009.09.028CrossRefPubMedGoogle Scholar
  219. Reddy TV, Viswanathan L, Venkitasubramanian TA (1971) High aflatoxin production on a chemically defined medium. Appl Microbiol 22:393–396CrossRefGoogle Scholar
  220. Reddy TV, Viswanathan L, Venkitasubramanian TA (1979) Factors affecting aflatoxin production by Aspergillus parasiticus in a chemically defined medium. J Gen Microbiol 114:409–413.  https://doi.org/10.1099/00221287-114-2-409CrossRefPubMedGoogle Scholar
  221. Redouane-Salah S, Morgavi DP, Arhab R et al (2015) Presence of aflatoxin M1 in raw, reconstituted, and powdered milk samples collected in Algeria. Environ Monit Assess 187:375.  https://doi.org/10.1007/s10661-015-4627-yCrossRefPubMedGoogle Scholar
  222. Richard JL (2007) Some major mycotoxins and their mycotoxicoses–an overview. Int J Food Microbiol 20:3–10.  https://doi.org/10.1016/j.ijfoodmicro.2007.07.019CrossRefGoogle Scholar
  223. Ridenour JB, Bluhm BH (2017) The novel fungal-specific gene FUG1 has a role in pathogenicity and fumonisin biosynthesis in Fusarium verticillioides. Mol Plant Pathol 18:513–528.  https://doi.org/10.1111/mpp.12414CrossRefPubMedGoogle Scholar
  224. Rimando AM, Porter JK (1997) Fusaric acid increases melatonin levels in the weanling rat and in pineal cell cultures. J Toxicol Environ Health 50:275–284.  https://doi.org/10.1080/009841097160483CrossRefPubMedGoogle Scholar
  225. Robert L, Bowden F, John FL (1992) Nitrate-nonutilizing mutants of Gibberella zeae (Fusarium graminearum) and their use in determining vegetative compatibility. Exp Mycol 16:308–315.  https://doi.org/10.1016/0147-5975(92)90007-ECrossRefGoogle Scholar
  226. Roberts BA, Patterson DS (1975) Detection of twelve mycotoxins in mixed animal feedstuffs, using a novel membrane cleanup procedure. J Assoc Off Anal Chem 58:1178–1181PubMedGoogle Scholar
  227. Rotimi OA, Rotimi SO, Duru CU et al (2017) Acute aflatoxin B1 – induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 4:408–414.  https://doi.org/10.1016/j.toxrep.2017.07.006CrossRefPubMedPubMedCentralGoogle Scholar
  228. Sakamoto S, Putalun W, Vimolmangkang S et al (2017) Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J Nat Med 72:32–42.  https://doi.org/10.1007/s11418-017-1144-zCrossRefPubMedPubMedCentralGoogle Scholar
  229. Samapundo S, Devliehgere F, De Meulenaer B et al (2005) Effect of water activity and temperature on growth and the relationship between fumonisin production and the radial growth of Fusarium verticillioides and Fusarium proliferatum on corn. J Food Prot 68:1054–1059.  https://doi.org/10.4315/0362-028X-68.5.1054CrossRefPubMedGoogle Scholar
  230. Sangare-Tigori B, Moukha S, Kouadio HJ et al (2006) Co-occurrence of aflatoxin B1, fumonisin B1, ochratoxin A and zearalenone in cereals and peanuts from Côte d’Ivoire. Food Addit Contam 23:1000–1007CrossRefGoogle Scholar
  231. Santos L, Marín S, Sanchis V et al (2009) Screening of mycotoxin multicontamination in medicinal and aromatic herbs sampled in Spain. J Sci Food Agric 89:1802–1807.  https://doi.org/10.1002/jsfa.3647CrossRefGoogle Scholar
  232. Sava V, Reunova O, Velasquez A et al (2006) Can low level exposure to ochratoxin-A cause parkinsonism? J Neurol Sci 249:68–75.  https://doi.org/10.1016/j.jns.2006.06.006CrossRefPubMedGoogle Scholar
  233. Sava V, Mosquera D, Song S et al (2018) Rubratoxin B elicits antioxidative and DNA repair responses in mouse brain. Gene Expr 11:211–219.  https://doi.org/10.3727/000000003783992261CrossRefPubMedCentralGoogle Scholar
  234. Schaafsma AW, Hooker DC (2007) Climatic models to predict occurrence of Fusarium toxins in wheat and maize. Int J Food Microbiol 119:116–125.  https://doi.org/10.1016/j.ijfoodmicro.2007.08.006CrossRefPubMedGoogle Scholar
  235. Schmidt-Heydt M, Geisen R (2007) A microarray for monitoring the production of mycotoxins in food. Int J Food Microbiol 117:131–140.  https://doi.org/10.1016/j.ijfoodmicro.2007.01.014CrossRefPubMedGoogle Scholar
  236. Schmidt-Heydt M, Stoll D, Schütz P et al (2015) Oxidative stress induces the biosynthesis of citrinin by Penicillium verrucosum at the expense of ochratoxin. Int J Food Microbiol 192(192):1–6.  https://doi.org/10.1016/j.ijfoodmicro.2014.09.008CrossRefPubMedGoogle Scholar
  237. Schoevers EJ, Santos RR, Colenbrander B et al (2012) Transgenerational toxicity of Zearalenone in pigs. Reprod Toxicol 34:110–119.  https://doi.org/10.1016/j.reprotox.2012.03.004CrossRefPubMedGoogle Scholar
  238. Schöneberg T, Martin C, Wettstein FE et al (2016) Fusarium and mycotoxin spectra in Swiss barley are affected by various cropping techniques. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 33:1608–1619.  https://doi.org/10.1080/19440049.2016.1219071CrossRefPubMedPubMedCentralGoogle Scholar
  239. Seetha A, Monyo ES, Tsusaka TW et al (2018) Aflatoxin-lysine adducts in blood serum of the Malawian rural population and aflatoxin contamination in foods (groundnuts, maize) in the corresponding areas. Mycotoxin Res 34:195–204.  https://doi.org/10.1007/s12550-018-0314-5CrossRefPubMedGoogle Scholar
  240. Segvić Klarić M, Medić N, Hulina A et al (2014) Disturbed Hsp70 and Hsp27 expression and thiol redox status in porcine kidney PK15 cells provoked by individual and combined ochratoxin a and citrinin treatments. Food Chem Toxicol 71:97–105.  https://doi.org/10.1016/j.fct.2014.06.002CrossRefPubMedGoogle Scholar
  241. Selmanoglu G, Koçkaya EA (2004) Investigation of the effects of patulin on thyroid and testis, and hormone levels in growing male rats. Food Chem Toxicol 42:721–727.  https://doi.org/10.1016/j.fct.2003.12.007CrossRefPubMedGoogle Scholar
  242. Shah HU, Simpson TJ, Alam S et al (2010) Mould incidence and mycotoxin contamination in maize kernels from Swat Valley, North West Frontier Province of Pakistan. Food Chem Toxicol 48:1111–1116.  https://doi.org/10.1016/j.fct.2010.02.004CrossRefPubMedGoogle Scholar
  243. Sheik Abdul N, Nagiah S, Chuturgoon AA (2016) Fusaric acid induces mitochondrial stress in human hepatocellular carcinoma (HepG2) cells. Toxicon 119:336–344.  https://doi.org/10.1016/j.toxicon.2016.07.002CrossRefPubMedGoogle Scholar
  244. Sheik Abdul N, Nagiah S, Chuturgoon AA (2019) Fusaric acid induces NRF2 as a cytoprotective response to prevent NLRP3 activation in the liver derived HepG2 cell line. Toxicol In Vitro 55:151–159.  https://doi.org/10.1016/j.tiv.2018.12.008CrossRefPubMedGoogle Scholar
  245. Shephard GS, van der Westhuizen L, Gatyeni PM et al (2005) Do fumonisin mycotoxins occur in wheat? J Agric Food Chem 53:9293–9296.  https://doi.org/10.1021/jf052101sCrossRefPubMedGoogle Scholar
  246. Shephard GS, Burger HM, Gambacorta L et al (2013) Multiple mycotoxin exposure determined by urinary biomarkers in rural subsistence farmers in the former Transkei, South Africa. Food Chem Toxicol 62:217–225.  https://doi.org/10.1016/j.fct.2013.08.040CrossRefPubMedGoogle Scholar
  247. Shinozuka J, Li G, Kiatipattanasakul W et al (1997) T-2 toxin-induced apoptosis in lymphoid organs of mice. Exp Toxicol Pathol 49:387–392.  https://doi.org/10.1016/S0940-2993(97)80124-8CrossRefPubMedGoogle Scholar
  248. Shinozuka J, Suzuki M, Noguchi N et al (1998) T-2 toxin-induced apoptosis in hematopoietic tissues of mice. Toxicol Pathol 26:674–681.  https://doi.org/10.1177/019262339802600512CrossRefPubMedGoogle Scholar
  249. Shwab EK, Bok JW, Tribus M et al (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 6:1656–1664.  https://doi.org/10.1128/EC.00186-07CrossRefPubMedPubMedCentralGoogle Scholar
  250. Sineque AR, Macuamule CL, Dos Anjos FR (2017) Aflatoxin B1 contamination in chicken livers and gizzards from industrial and small abattoirs, measured by ELISA technique in Maputo, Mozambique. Int J Environ Res Public Health 14:951.  https://doi.org/10.3390/ijerph14090951CrossRefPubMedCentralGoogle Scholar
  251. Sizaret P, Malaveille C, Montesano R et al (1982) Detection of aflatoxins and related metabolites by radioimmunoassay. J Natl Cancer Inst 69:1375–1381PubMedGoogle Scholar
  252. Smith TK, MacDonald EJ (1991) Effect of fusaric acid on brain regional neurochemistry and vomiting behavior in swine. J Anim Sci 69:2044–2049.  https://doi.org/10.2527/1991.6952044xCrossRefPubMedGoogle Scholar
  253. Smith GW, Constable PD, Tumbleson ME et al (1999) Sequence of cardiovascular changes leading to pulmonary edema in swine fed culture material containing fumonisin. Am J Vet Res 60:1292–1300PubMedGoogle Scholar
  254. Smith MC, Hymery N, Troadec S et al (2017) Hepatotoxicity of fusariotoxins, alone and in combination, towards the HepaRG human hepatocyte cell line. Food Chem Toxicol 109:439–451.  https://doi.org/10.1016/j.fct.2017.09.022CrossRefPubMedGoogle Scholar
  255. Solfrizzo M, Gambacorta L, Lattanzio VM et al (2011) Simultaneous LC-MS/MS determination of aflatoxin M1, ochratoxin A, deoxynivalenol, de-epoxydeoxynivalenol, α and β-zearalenols and fumonisin B1 in urine as a multi-biomarker method to assess exposure to mycotoxins. Anal Bioanal Chem 401:2831–2841.  https://doi.org/10.1007/s00216-011-5354-zCrossRefPubMedGoogle Scholar
  256. Sorenson WG, Simpson J (1986) Toxicity of penicillic acid for rat alveolar macrophages in vitro. Environ Res 41:505–513.  https://doi.org/10.1016/S0013-9351(86)80145-1CrossRefPubMedGoogle Scholar
  257. Stockmann-Juvala H, Mikkola J, Naarala J et al (2004a) Fumonisin B1-induced toxicity and oxidative damage in U-118MG glioblastoma cells. Toxicology 202:173–183.  https://doi.org/10.1016/j.tox.2004.05.002CrossRefPubMedGoogle Scholar
  258. Stockmann-Juvala H, Mikkola J, Naarala J et al (2004b) Oxidative stress induced by fumonisin B1 in continuous human and rodent neural cell cultures. Free Radic Res 38:933–942.  https://doi.org/10.1080/10715760412331273205CrossRefPubMedGoogle Scholar
  259. Stoll D, Schmidt-Heydt M, Geisen R (2013) Differences in the regulation of ochratoxin A by the HOG pathway in Penicillium and Aspergillus in response to high osmolar environments. Toxins 5:1282–1298.  https://doi.org/10.3390/toxins5071282CrossRefPubMedPubMedCentralGoogle Scholar
  260. Sueck F, Cramer B, Czeschinski P et al (2018a) Human study on the kinetics of 2’R-ochratoxin A in the blood of coffee drinkers. Mol Nutr Food Res 63(4):e1801026.  https://doi.org/10.1002/mnfr.201801026CrossRefPubMedGoogle Scholar
  261. Sueck F, Poór M, Faisal Z et al (2018b) Interaction of ochratoxin A and its thermal degradation product 2’R-ochratoxin A with human serum albumin. Toxins 10:pii: E256.  https://doi.org/10.3390/toxins10070256CrossRefGoogle Scholar
  262. Sugiyama K, Hiraoka H, Sugita-Konishi Y (2008) Aflatoxin M1 contamination in raw bulk milk and the presence of aflatoxin B1 in corn supplied to dairy cattle in Japan. Shokuhin Eiseigaku Zasshi 49:352–355.  https://doi.org/10.3358/shokueishi.49.352CrossRefPubMedGoogle Scholar
  263. Sur E, Celik I (2003) Effects of aflatoxin B1 on the development of the bursa of Fabricius and blood lymphocyte acid phosphatase of the chicken. Br Poult Sci 44:558–566.  https://doi.org/10.1080/00071660310001618352CrossRefPubMedGoogle Scholar
  264. Sutton P, Newcombe NR, Waring P et al (1994) In vivo immunosuppressive activity of gliotoxin, a metabolite produced by human pathogenic fungi. Infect Immun 62:1192–1198CrossRefGoogle Scholar
  265. Székács A, Adányi N, Székács I et al (2009) Optical waveguide light-mode spectroscopy immunosensors for environmental monitoring. Appl Opt 48:B151–B158.  https://doi.org/10.1364/AO.48.00B151CrossRefPubMedGoogle Scholar
  266. Taheri N, Semnani S, Roshandel G et al (2012) Aflatoxin contamination in wheat flour samples from golestan province, northeast of iran. Iran J Public Health 41:42–47PubMedPubMedCentralGoogle Scholar
  267. Tan Y, Chu X, Shen GL et al (2009) A signal-amplified electrochemical immunosensor for aflatoxin B(1) determination in rice. Anal Biochem 387:82–86.  https://doi.org/10.1016/j.ab.2008.12.030CrossRefPubMedGoogle Scholar
  268. Taye W, Ayalew A, Chala A et al (2016) Aflatoxin B1 and total fumonisin contamination and their producing fungi in fresh and stored sorghum grain in East Hararghe, Ethiopia. Food Addit Contam Part B Surveill 9:237–245.  https://doi.org/10.1080/19393210.2016.1184190CrossRefPubMedGoogle Scholar
  269. Tchana AN, Moundipa PF, Tchouanguep FM (2010) Aflatoxin contamination in food and body fluids in relation to malnutrition and cancer status in Cameroon. Int J Environ Res Public Health 7:178–188.  https://doi.org/10.3390/ijerph7010178CrossRefPubMedPubMedCentralGoogle Scholar
  270. Theumer MG, Henneb Y, Khoury L et al (2018) Genotoxicity of aflatoxins and their precursors in human cells. Toxicol Lett 287:100–107.  https://doi.org/10.1016/j.toxlet.2018.02.007CrossRefPubMedGoogle Scholar
  271. Thuvander A, Breitholtz-Emanuelsson A, Olsen M (1995) Effects of ochratoxin A on the mouse immune system after subchronic exposure. Food Chem Toxicol 33:1005–1011.  https://doi.org/10.1016/0278-6915(95)00075-5CrossRefPubMedGoogle Scholar
  272. Tilburn J, Sarkar S, Widdick DA et al (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid-and alkaline-expressed genes by ambient pH. EMBO J 14:779–790.  https://doi.org/10.1002/j.1460-2075.1995.tb07056.xCrossRefPubMedPubMedCentralGoogle Scholar
  273. Vargas EA, Preis RA, Castro L et al (2001) Co-occurrence of aflatoxins B1, B2, G1, G2, zearalenone and fumonisin B1 in Brazilian corn. Food Addit Contam 18:981–986.  https://doi.org/10.1080/02652030110046190CrossRefPubMedGoogle Scholar
  274. Vidal JC, Duato P, Bonel L et al (2009) Use of polyclonal antibodies to ochratoxin A with a quartz-crystal microbalance for developing real-time mycotoxin piezoelectric immunosensors. Anal Bioanal Chem 394:575–582.  https://doi.org/10.1007/s00216-009-2736-6CrossRefPubMedGoogle Scholar
  275. Wallin S, Gambacorta L, Kotova N et al (2015) Biomonitoring of concurrent mycotoxin exposure among adults in Sweden through urinary multi-biomarker analysis. Food Chem Toxicol 83:133–139.  https://doi.org/10.1016/j.fct.2015.05.023CrossRefPubMedGoogle Scholar
  276. Wang GH, Xue CY, Chen F et al (2009) Effects of combinations of ochratoxin A and T-2 toxin on immune function of yellow-feathered broiler chickens. Poult Sci 88:504–510.  https://doi.org/10.3382/ps.2008-00329CrossRefPubMedGoogle Scholar
  277. Wang C, Qian J, An K et al (2017) Magneto-controlled aptasensor for simultaneous electrochemical detection of dual mycotoxins in maize using metal sulfide quantum dots coated silica as labels. Biosens Bioelectron 89:802–809.  https://doi.org/10.1016/j.bios.2016.10.010CrossRefPubMedPubMedCentralGoogle Scholar
  278. Wang J, Yang C, Yuan Z et al (2018) Toxin exposure induces apoptosis in TM3 cells by inhibiting mammalian target of rapamycin/serine/threonine protein kinase(mTORC2/AKT) to promote Ca2+production. Int J Mol Sci 19:3360.  https://doi.org/10.3390/ijms19113360CrossRefPubMedCentralGoogle Scholar
  279. Wangikar PB, Dwivedi P, Sinha N et al (2005) Effects of aflatoxin B1 on embryo fetal development in rabbits. Food Chem Toxicol 43:607–615.  https://doi.org/10.1016/j.fct.2005.01.004CrossRefPubMedGoogle Scholar
  280. Waring P, Beaver J (1996) Gliotoxin and related epipolythiodioxopiperazines. Gen Pharmacol 27:1311–1316.  https://doi.org/10.1016/S0306-3623(96)00083-3CrossRefPubMedGoogle Scholar
  281. Watson SA, Hayes AW (1981) Binding of rubratoxin B to mouse hepatic microsomes and in vitro effects of the mycotoxin on polysome binding to microsomal membranes as measured by the activity of an enzyme catalyzing disulphide interchange. Toxicon 19:509–516.  https://doi.org/10.1016/0041-0101(81)90009-XCrossRefPubMedGoogle Scholar
  282. Weaver GA, Kurtz HJ, Bates FY et al (1981) Diacetoxyscirpenol toxicity in pigs. Res Vet Sci 31:131–135.  https://doi.org/10.1016/S0034-5288(18)32480-9CrossRefPubMedGoogle Scholar
  283. Wilkinson JR, Yu J, Bland JM et al (2007) Amino acid supplementation reveals differential regulation of aflatoxin biosynthesis in Aspergillus flavus NRRL 3357 and Aspergillus parasiticus SRRC 143. Appl Microbiol Biotechnol 74:1308–1319.  https://doi.org/10.1007/s00253-006-0768-9CrossRefPubMedGoogle Scholar
  284. Woloshuk CP, Cavaletto JR, Cleveland TE (1997) Inducers of aflatoxin biosynthesis from colonized maize kernels are generated by an amylase activity from Aspergillus flavus. Phytopathology 87:164–169.  https://doi.org/10.1094/PHYTO.1997.87.2.164CrossRefPubMedGoogle Scholar
  285. Wong KH, Hynes MJ, Todd RB et al (2007) Transcriptional control of nmrA by the bZIP transcription factor MeaB reveals a new level of nitrogen regulation in Aspergillus nidulans. Mol Microbiol 66:534–551.  https://doi.org/10.1111/j.1365-2958.2007.05940.xCrossRefPubMedGoogle Scholar
  286. Wu HC, Santella R (2012) The role of aflatoxins in hepatocellular carcinoma. Hepat Mon 12:e7238.  https://doi.org/10.5812/hepatmon.7238CrossRefPubMedPubMedCentralGoogle Scholar
  287. Wu L, Qiu L, Zhang H et al (2017) Optimization for the production of deoxynivalenoland zearalenone by Fusarium graminearum using response surface methodology. Toxins 9:pii: E57.  https://doi.org/10.3390/toxins9020057CrossRefGoogle Scholar
  288. Wu TS, Cheng YC, Chen PJ et al (2019) Exposure to aflatoxin B1 interferes with locomotion and neural development in zebrafish embryos and larvae. Chemosphere 217:905–913.  https://doi.org/10.1016/j.chemosphere.2018.11.058CrossRefPubMedGoogle Scholar
  289. Xue CY, Wang GH, Chen F et al (2010) Immunopathological effects of ochratoxin A and T-2 toxin combination on broilers. Poult Sci 89:1162–1166.  https://doi.org/10.3382/ps.2009-00609CrossRefPubMedGoogle Scholar
  290. Yang L, Yu Z, Hou J et al (2016) Toxicity and oxidative stress induced by T-2 toxin and HT-2 toxin in broilers and broiler hepatocytes. Food Chem Toxicol 87:128–137.  https://doi.org/10.1016/j.fct.2015.12.003CrossRefPubMedGoogle Scholar
  291. Yang L, Tu D, Zhao Z et al (2017) Cytotoxicity and apoptosis induced by mixed mycotoxins (T-2 and HT-2 toxin) on primary hepatocytes of broilers in vitro. Toxicon 129:1–10.  https://doi.org/10.1016/j.toxicon.2017.01.001CrossRefPubMedGoogle Scholar
  292. Yang L, Tu D, Wang N et al (2019) The protective effects of DL-Selenomethionine against T-2/HT-2 toxins-induced cytotoxicity and oxidative stress in broiler hepatocytes. Toxicol In Vitro 54:137–146.  https://doi.org/10.1016/j.tiv.2018.09.016CrossRefPubMedGoogle Scholar
  293. Yarru LP, Settivari RS, Antoniou E et al (2009) Toxicological and gene expression analysis of the impact of aflatoxin B1 on hepatic function of male broiler chicks. Poult Sci 88:360–371.  https://doi.org/10.3382/ps.2008-00258CrossRefPubMedGoogle Scholar
  294. Yin S, Zhang Y, Gao R et al (2014) The immunomodulatory effects induced by dietary zearalenone in pregnant rats. Immunopharmacol Immunotoxicol 36:187–194.  https://doi.org/10.3109/08923973.2014.909847CrossRefPubMedGoogle Scholar
  295. Young KL, Villar D, Carson TL et al (2003) Tremorgenic mycotoxin intoxication with penitrem a and roquefortine in two dogs. J Am Vet Med Assoc 222:52–3, 35.  https://doi.org/10.2460/javma.2003.222.52CrossRefPubMedGoogle Scholar
  296. Yu J, Chang P, Bhatnagar D et al (2000) Cloning of a sugar utilization gene cluster in Aspergillus parasiticus. Biochim Biophys Acta 1493:211–214.  https://doi.org/10.1016/S0167-4781(00)00148-2CrossRefPubMedGoogle Scholar
  297. Yu J, Mohawed SM, Bhatnagar D et al (2003) Substrate-induced lipase gene expression and aflatoxin production in Aspergillus parasiticus and Aspergillus flavus. J Appl Microbiol 95:1334–1342.  https://doi.org/10.1046/j.1365-2672.2003.02096.xCrossRefPubMedGoogle Scholar
  298. Yu J, Fedorova ND, Montalbano BG et al (2011) Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-Seq. FEMS Microbiol Lett 322:145–149.  https://doi.org/10.1111/j.1574-6968.2011.02345.xCrossRefPubMedGoogle Scholar
  299. Yuan G, Wang Y, Yuan X et al (2014) T-2 toxin induces developmental toxicity and apoptosis in zebrafish embryos. J Environ Sci 26:917–925.  https://doi.org/10.1016/S1001-0742(13)60510-0CrossRefGoogle Scholar
  300. Zhang X, Li J, Zong N et al (2014) Ochratoxin A in dried vine fruits from Chinese markets. Food Addit Contam Part B Surveill 7:157–161.  https://doi.org/10.1080/19393210.2013.867365CrossRefPubMedGoogle Scholar
  301. Zhang L, Dou X-W, Zhang C et al (2018) A review of current methods for analysis of mycotoxins in herbal medicines. Toxins 10:65.  https://doi.org/10.3390/toxins10020065CrossRefPubMedCentralGoogle Scholar
  302. Zheng W, Wang B, Si M et al (2018a) Zearalenone altered the cytoskeletal structure via ER stress- autophagy- oxidative stress pathway in mouse TM4 Sertoli cells. Sci Rep 8:3320.  https://doi.org/10.1038/s41598-018-21567-8CrossRefPubMedPubMedCentralGoogle Scholar
  303. Zheng WL, Wang BJ, Wang L et al (2018b) ROS-mediated cell cycle arrest and apoptosis induced by zearalenone in mouse sertoli cells via ER stress and the ATP/AMPK pathway. Toxins 10:24.  https://doi.org/10.3390/toxins10010024CrossRefPubMedCentralGoogle Scholar
  304. Zhou C, Zhang Y, Yin S et al (2015) Biochemical changes and oxidative stress induced by zearalenone in the liver of pregnant rats. Hum Exp Toxicol 34:65–73.  https://doi.org/10.1177/0960327113504972CrossRefPubMedGoogle Scholar
  305. Zhuang Z, Yang D, Huang Y et al (2013) Study on the apoptosis mechanism induced by T-2 toxin. PLoS One 8:e83105.  https://doi.org/10.1371/journal.pone.0083105CrossRefPubMedPubMedCentralGoogle Scholar
  306. Zinedine A, Fernández-Franzón M, Mañes J et al (2017) Multi-mycotoxin contamination of couscous semolina commercialized in Morocco. Food Chem 214:440–446.  https://doi.org/10.1016/j.foodchem.2016.07.098CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohamed Amine Gacem
    • 1
    • 2
  • Aminata Ould El Hadj-Khelil
    • 1
  • Badreddine Boudjemaa
    • 2
  • Hiba Gacem
    • 3
  1. 1.Laboratory of Ecosystems Protection in Arid and Semi-Arid AreaUniversity of Kasdi MerbahOuarglaAlgeria
  2. 2.Department of Biology, Faculty of scienceUniversity of Amar TlidjiLaghouatAlgeria
  3. 3.Epidemiology Service and Preventive Medicine, Faculty of MedicineUniversity of Djillali LiabesSidi-Bel-AbbesAlgeria

Personalised recommendations