Advertisement

Selected Challenges in Grammar-Based Text Generation from the Semantic Web

  • Simon MilleEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11866)

Abstract

In this paper, based on the recent outcome of two shared tasks on structured data verbalisation, and examining one system in particular, we present some evidence why grammar-based systems are particularly relevant for the verbalisation of structured data as found in the Semantic Web. We then define possible future lines of research, centered around the FORGe system and the linguistic grounding of Semantic Web datasets.

Keywords

Natural Language Generation Semantic Web Grammar-based systems 

Notes

Acknowledgements

The work reported in this paper has been partly supported by the European Commission in the framework of the H2020 Programme under the contract numbers 700475-IA, 700024-RIA, 779962-RIA, 786731-RIA and 825079-ICT-STARTS.

References

  1. 1.
    Androutsopoulos, I., Lampouras, G., Galanis, D.: Generating natural language descriptions from OWL ontologies: the naturalowl system. J. Artif. Intell. Res. 48, 671–715 (2013)CrossRefGoogle Scholar
  2. 2.
    Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pp. 65–72 (2005)Google Scholar
  3. 3.
    Belz, A.: Automatic generation of weather forecast texts using comprehensive probabilistic generation-space models. J. Nat. Lang. Eng. 14(4), 431–455 (2008)CrossRefGoogle Scholar
  4. 4.
    Belz, A., White, M., Espinosa, D., Kow, E., Hogan, D., Stent, A.: The first surface realisation shared task: overview and evaluation results. In: Proceedings of the Generation Challenges Session at the 13th European Workshop on Natural Language Generation (ENLG), Nancy, France, pp. 217–226 (2011)Google Scholar
  5. 5.
    Bontcheva, K., Wilks, Y.: Automatic report generation from ontologies: The MIAKT approach. In: Meziane, F., Métais, E. (eds.) NLDB 2004. LNCS, vol. 3136, pp. 324–335. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27779-8_28CrossRefGoogle Scholar
  6. 6.
    Bosque-Gil, J., Gracia, J., Montiel-Ponsoda, E., Gómez-Pérez, A.: Models to represent linguistic linked data. Nat. Lang. Eng. 24(6), 811–859 (2018)CrossRefGoogle Scholar
  7. 7.
    Bouayad-Agha, N., Casamayor, G., Mille, S., Wanner, L.: Perspective-oriented generation of football match summaries: old tasks, new challenges. ACM Trans. Speech Lang. Process. 9(2), 3:1–3:31 (2012)CrossRefGoogle Scholar
  8. 8.
    Bouayad-Agha, N., Casamayor, G., Wanner, L.: Natural language generation in the context of the semantic web. Semant. Web 5(6), 493–513 (2014)Google Scholar
  9. 9.
    Corcoglioniti, F., Rospocher, M., Aprosio, A.P., Tonelli, S.: PreMON: a lemon extension for exposing predicate models as linked data. In: Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC), pp. 877–884 (2016)Google Scholar
  10. 10.
    Dannélls, D., Damova, M., Enache, R., Chechev, M.: Multilingual online generation from semantic web ontologies. In: Proceedings of the 21st International Conference on World Wide Web, pp. 239–242. ACM (2012)Google Scholar
  11. 11.
    Elder, H., Gehrmann, S., O’Connor, A., Liu, Q.: E2E NLG challenge submission: towards controllable generation of diverse natural language. In: Proceedings of the 11th International Conference on Natural Language Generation, pp. 457–462 (2018)Google Scholar
  12. 12.
    Fillmore, C.J., Baker, C.F., Sato, H.: The FrameNet database and software tools. In: Proceedings of the 3rd International Conference on Language Resources and Evaluation (LREC), Las Palmas, Canary Islands, Spain, pp. 1157–1160 (2002)Google Scholar
  13. 13.
    Galanis, D., Androutsopoulos, I.: Generating multilingual descriptions from linguistically annotated OWL ontologies: the naturalowl system. In: Proceedings of the Eleventh European Workshop on Natural Language Generation, pp. 143–146. Association for Computational Linguistics (2007)Google Scholar
  14. 14.
    Gardent, C., Shimorina, A., Narayan, S., Perez-Beltrachini, L.: Creating training corpora for micro-planners. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Vancouver, Canada, August 2017Google Scholar
  15. 15.
    Gardent, C., Shimorina, A., Narayan, S., Perez-Beltrachini, L.: The WebNLG challenge: generating text from RDF data. In: Proceedings of the 10th International Conference on Natural Language Generation, pp. 124–133 (2017)Google Scholar
  16. 16.
    Gatt, A., Krahmer, E.: Survey of the state of the art in natural language generation: core tasks, applications and evaluation. J. Artif. Intell. Res. 61, 65–170 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngonga Ngomo, A.C.: Survey on challenges of question answering in the semantic web. Semant. Web 8(6), 895–920 (2017)CrossRefGoogle Scholar
  18. 18.
    Kingsbury, P., Palmer, M.: From TreeBank to PropBank. In: Proceedings of the 3rd International Conference on Language Resources and Evaluation (LREC), Las Palmas, Canary Islands, Spain, pp. 1989–1993 (2002)Google Scholar
  19. 19.
    Kwok, C., Etzioni, O., Weld, D.S.: Scaling question answering to the web. ACM Trans. Inf. Syst. (TOIS) 19(3), 242–262 (2001)CrossRefGoogle Scholar
  20. 20.
    Lareau, F., Lambrey, F., Dubinskaite, I., Galarreta-Piquette, D., Nejat, M.: GenDR: a generic deep realizer with complex lexicalization. In: Proceedings of the 11th International Conference on Language Resources and Evaluation (LREC), Miyazaki, Japan, pp. 3018–3025 (2018)Google Scholar
  21. 21.
    Mel’čuk, I.: Dependency Syntax: Theory and Practice. State University of New York Press, Albany (1988)Google Scholar
  22. 22.
    Meyers, A., et al.: The NomBank project: an interim report. In: Proceedings of the Workshop on Frontiers in Corpus Annotation, Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics (HLT/NAACL), Boston, MA, USA, pp. 24–31 (2004)Google Scholar
  23. 23.
    Mille, S., Belz, A., Bohnet, B., Graham, Y., Pitler, E., Wanner, L.: The first multilingual surface realisation shared task (SR 2018): overview and evaluation results. In: Proceedings of the 1st Workshop on Multilingual Surface Realisation (MSR), 56th Annual Meeting of the Association for Computational Linguistics (ACL), Melbourne, Australia, pp. 1–12 (2018)Google Scholar
  24. 24.
    Mille, S., Carlini, R., Burga, A., Wanner, L.: FORGe at SemEval-2017 task 9: deep sentence generation based on a sequence of graph transducers. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), Vancouver, Canada, pp. 917–920. Association for Computational Linguistics, August 2017. http://www.aclweb.org/anthology/S17-2158
  25. 25.
    Mille, S., Wanner, L.: Towards large-coverage detailed lexical resources for data-to-text generation. In: Proceedings of the First International Workshop on Data-to-text Generation, Edinburgh, Scotland (2015)Google Scholar
  26. 26.
    Nayak, N., Hakkani-Tür, D., Walker, M.A., Heck, L.P.: To plan or not to plan? discourse planning in slot-value informed sequence to sequence models for language generation. In: Proceedings of INTERSPEECH, Stockholm, Sweden, pp. 3339–3343 (2017)Google Scholar
  27. 27.
    Novikova, J., Dušek, O., Rieser, V.: The E2E dataset: new challenges for end-to-end generation. In: Proceedings of the 18th Annual Meeting of the Special Interest Group on Discourse and Dialogue, Saarbrücken, Germany (2017). https://arxiv.org/abs/1706.09254, arXiv:1706.09254
  28. 28.
    Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics (2002)Google Scholar
  29. 29.
    Perez-Beltrachini, L., Gardent, C.: Learning embeddings to lexicalise RDF properties. In: * SEM 2016, The Fifth Joint Conference on Lexical and Computational Semantics, pp. 219–228 (2016)Google Scholar
  30. 30.
    Rambow, O., Korelsky, T.: Applied text generation. In: Proceedings of the 3rd Conference on Applied Natural Language Processing (ANLP), Trento, Italy, pp. 40–47 (1992)Google Scholar
  31. 31.
    Schuler, K.K.: VerbNet: a broad-coverage, comprehensive verb lexicon. Ph.D. thesis, University of Pennsylvania (2005)Google Scholar
  32. 32.
    Shimorina, A., Gardent, C., Narayan, S., Perez-Beltrachini, L.: The WebNLG challenge: report on human evaluation. Technical report, Université de Lorraine, Nancy, France (2017)Google Scholar
  33. 33.
    Stevens, R., Malone, J., Williams, S., Power, R., Third, A.: Automating generation of textual class definitions from OWL to English. J. Biomed. Semant. 2, S5 (2011). BioMed CentralCrossRefGoogle Scholar
  34. 34.
    Walter, S., Unger, C., Cimiano, P.: M-ATOLL: a framework for the lexicalization of ontologies in multiple languages. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 472–486. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11964-9_30CrossRefGoogle Scholar
  35. 35.
    Wanner, L., Bohnet, B., Bouayad-Agha, N., Lareau, F., Nicklaß, D.: MARQUIS: generation of user-tailored multilingual air quality bulletins. Appl. Artif. Intell. 24(10), 914–952 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations