Advertisement

Mathematical Foundation of Cognitive Computing Based Artificial Intelligence

  • Tamás GergelyEmail author
  • László Ury
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11866)

Abstract

Today Cognitive computing and Artificial Intelligence (AI) face the same challenges namely, simulate human thought processes and mimic the way human brain works. The main difference between Cognitive computing and AI is: (i) AI models various functions of human intelligence, where computer is one of the modelling means though often the most important one, i.e. intelligence is in the focus while (ii) Cognitive computing models human thought processes and simulates the hypothetical way human brain works as computation.

Our aim is to develop a theoretically and methodologically well-founded theory of AI together with a unified computational theory, which will provide specific tools and methods for Cognitive computing.

To achieve our goal we follow a methodology triangle, consisting of a conceptual-philosophical, a system theoretical and a logical-mathematical component. Computing will play a fundamental role in both system-theoretical and logical-mathematical methodological components.

Hereby we concentrate on the development of the logical-mathematical foundation in detail by the use of category theory, which provides an excellent frame for defining all notions necessary for developing a universal theory for computing, specification, cognitive reasoning, information, knowledge and their various combinations. Foundation theory is by the use of the so-called constitutions, the mathematical basis for the cognitive computation. Logical foundation will be developed as a special constitution and cognitive computing processes are defined by using situations, infons and information. The main properties are discussed with some examples.

Keywords

Categorical theoretical foundation Cognitive computing Specification theory Cognitive reasoning Computing theory Logic programming 

References

  1. 1.
  2. 2.
    Akama, S., Murai, T., Kudo, Y.: Reasoning with Rough Sets - Logical Approaches to Granularity-Based Framework. Springer, Switzerland (2018).  https://doi.org/10.1007/978-3-319-72691-5CrossRefzbMATHGoogle Scholar
  3. 3.
    Amir, A. et al.: Cognitive computing programming paradigm: a corelet language for composing networks of neurosynaptic cores, In: Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN) (2013)Google Scholar
  4. 4.
    Anshakov, O., Gergely, T.: Cognitive Reasoning - A Formal Approach. Springer, Berlin (2010).  https://doi.org/10.1007/978-3-540-68875-4CrossRefzbMATHGoogle Scholar
  5. 5.
    Barwise, J.: The situation in logic. CSLI Lecture Notes Number, vol. 17 (1989)Google Scholar
  6. 6.
    Brasil, L.M., et al.: Hybrid expert system for decision supporting in the medical area: complexity and cognitive computing. Int. J. Med. Inform. 63(1), 19–30 (2001)CrossRefGoogle Scholar
  7. 7.
    Goguen, J.A., Burstall, R.M.: Introducing institutions. In: Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 221–256. Springer, Heidelberg (1984).  https://doi.org/10.1007/3-540-12896-4_366CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Devlin, K.: Logic and Information. Cambridge University Press, Cambridge (1991)zbMATHGoogle Scholar
  10. 10.
    Fresco, N.: Physical Computation and Cognitive Science. Springer, Berlin (2014).  https://doi.org/10.1007/978-3-642-41375-9CrossRefGoogle Scholar
  11. 11.
    Gergely, T., Szőts, M.: Cuttable formulas for logic programming, In: Proceedings of the Symposium on Logic Programming, IEEE Press (1984)Google Scholar
  12. 12.
    Gergely, T., Ury, L.: Programming in topoi. a generalized approach to program semantics, In: Categorical and Algebraic Methods in Computer Science and System Theory, Herdecke, Germany (1980)Google Scholar
  13. 13.
    Gergely, T., Ury, L.: First-Order Programming Theories. EATCS Monographs on Theoretical Computer Science, vol. 24. Springer-Verlag, Berlin (1991).  https://doi.org/10.1007/978-3-642-58205-9CrossRefzbMATHGoogle Scholar
  14. 14.
    Grätzer, G.: Universal Algebra, 2nd edn. Springer-Verlag, New York (1979).  https://doi.org/10.1007/978-0-387-77487-9CrossRefzbMATHGoogle Scholar
  15. 15.
    Gutierrez-Garcia, J.O., Lopez-Neri, E.: Cognitive computing: a brief survey and open research challenges, In: 3rd International Conference on Applied Computing and Information Technology/2nd International Conference on Computational Science and Intelligence, pp. 328–333 (2015)Google Scholar
  16. 16.
    Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall, New Jersey (1998)zbMATHGoogle Scholar
  17. 17.
    Ivancevic, V.G., Ivancevic, T.T.: Computational Mind - A Complex Dynamics Perspective, Studies in Computational Intelligence 60. Springer-Verlag, Berlin (2007).  https://doi.org/10.1007/978-3-540-71561-0CrossRefzbMATHGoogle Scholar
  18. 18.
    Kumar, V.S., Dhillipan, J., Shanmugam, D.B.: Survey of recent research in granular computing. Int. J. Emerg. Technol. Comput. Sci. Electron. 24(3), 976–1353 (2017)Google Scholar
  19. 19.
    Maibaum, T.S.E.: Role of abstraction in program development. In: Kugler, H.J. (ed.) Information Processing 1986. Elsevier Science Publisher, Amsterdam (1986)Google Scholar
  20. 20.
    Milkowski, M.: Explaining the Computational Mind. The MIT Press, Cambridge (2013)CrossRefGoogle Scholar
  21. 21.
    Piccinini, G.: The computational theory of cognition. In: Müller, V.C. (ed.) Fundamental Issues of Artificial Intelligence, Synthese Library 376, pp. 203–221. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-26485-1_13CrossRefGoogle Scholar
  22. 22.
    Schank, R.: The Cognitive Computer: On Language Learning and Artificial Intelligence. Addison Wesley, Reading (1984)Google Scholar
  23. 23.
    Schank, R.: The fraudulent claims made by IBM about Watson and AI (2019). https://www.rogerschank.com/fraudulent-claims-made-by-IBM-about-Watson-and-AI
  24. 24.
    Ury, L., Gergely, T.: A constructive specification theory. In: Declarative Systems Elsevier Science Publishers, pp. 33–83 (1990)Google Scholar
  25. 25.
    Valiant, L.G.: Cognitive computation. In: Proceedings of IEEE 36th Annual Foundations of Computer Science, Milwaukee, WI, USA, pp. 2–3 (1995)Google Scholar
  26. 26.
    Wang, Y., et al.: A layered reference model of the brain (LRMB). IEEE Trans. Syst. Man Cybern. (Part C) 36(2), 124–133 (2006)CrossRefGoogle Scholar
  27. 27.
    Wang, Y.: On cognitive computing. Int. J. Softw. Sci. Comput. Intell. 1(3), 1–15 (2009)CrossRefGoogle Scholar
  28. 28.
    Wang, Y.: On denotational mathematics foundations for the next generation of computers: cognitive computers for knowledge processing. J. Adv. Math. Appl. 1(1), 121–133 (2012)CrossRefGoogle Scholar
  29. 29.
    Wirth, N.: Algorithms + Data Structures = Programs. Prentice Hall, New Jersey (1976)zbMATHGoogle Scholar
  30. 30.
    Yao, Y.: Artificial intelligence perspectives on granular computing. In: Pedrycz, W., Chen, S.-M. (eds.) Granular Computing and Intelligent Systems ISRL 13, pp. 17–34. Springer-Verlag, Berlin (2011).  https://doi.org/10.1007/978-3-642-19820-5_2CrossRefGoogle Scholar
  31. 31.
  32. 32.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Applied Logic LaboratoryBudapestHungary

Personalised recommendations