Advertisement

Natural Language Processing with DeepPavlov Library and Additional Semantic Features

  • Oleg SattarovEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11866)

Abstract

In this paper some basic methods of NER task managing in DeepPavlov library along with new neural network modifications with additional semantic features are observed. Means of DeepPavlov library were slightly improved and applied to new dataset with unique additional features, which caused feasible improvement of the neural model.

Keywords

Neural networks Natural language processing Named entity recognition DeepPavlov 

References

  1. 1.
  2. 2.
    OntoNotes Release 5.0 page. https://catalog.ldc.upenn.edu/LDC2013T19
  3. 3.
    Dialog State Tracking Challenge 2 & 3 page. http://camdial.org/~mh521/dstc/
  4. 4.
    Named_Entities_5 and 3 collection page. http://labinform.ru/pub/named_entities/descr_ne.htm
  5. 5.
  6. 6.
    Anh, L.T., Arkhipov, M.Y., Burtsev, M.S.: Application of a Hybrid Bi-LSTM-CRF model to the task of Russian Named Entity Recognition. ArXiv preprint, arXiv:1709.09686 (2017)
  7. 7.
    Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural Architectures for Named Entity Recognition. ArXiv preprint arXiv:1603.01360 (2016)
  8. 8.
    Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. ArXiv preprint, arXiv:1502.03167 (2015)
  9. 9.
  10. 10.
    Chiu, J.P.C., Nichols, E.: Named Entity Recognition with Bidirectional LSTM-CNNs. ArXiv preprint arXiv:1511.08308 (2016)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Corpus of news articles of Lenta.RU. https://github.com/yutkin/Lenta.Ru-News-Dataset
  13. 13.
    Global Vectors for Word Representation page. https://nlp.stanford.edu/projects/glove/
  14. 14.
    Tesnière L. Elements de syntaxe structurale. Editions Klincksieck (1959)Google Scholar
  15. 15.
    Chomsky, N.: Syntactic Structures, p. 117. Mouton, The Hague (1957)Google Scholar
  16. 16.
    Syntactic-semantic analyzer by Institute for Systems Analysis page. http://nlp.isa.ru/index.php/component/portal/?view=projsintsemanalysis

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Moscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations