Advertisement

A Geodesic Mixed Effects Model in Kendall’s Shape Space

  • Esfandiar Nava-YazdaniEmail author
  • Hans-Christian Hege
  • Christoph von Tycowicz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11846)

Abstract

In many applications, geodesic hierarchical models are adequate for the study of temporal observations. We employ such a model derived for manifold-valued data to Kendall’s shape space. In particular, instead of the Sasaki metric, we adapt a functional-based metric, which increases the computational efficiency and does not require the implementation of the curvature tensor. We propose the corresponding variational time discretization of geodesics and apply the approach for the estimation of group trends and statistical testing of 3D shapes derived from an open access longitudinal imaging study on osteoarthritis.

Keywords

Longitudinal modeling Shape trajectory Riemannian metric Geodesic regression Parallel transport Kendall’s shape space 

Notes

Acknowledgments

We are grateful for the open-access OAI dataset of the Osteoarthritis Initiative, that is a public-private partnership comprised of five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, a branch of the Department of Health and Human Services, and conducted by the OAI Study Investigators. Private funding partners include Merck Research Laboratories; Novartis Pharmaceuticals Corporation, GlaxoSmithKline; and Pfizer, Inc. Private sector funding for the OAI is managed by the Foundation for the National Institutes of Health. This manuscript was prepared using an OAI public use data set and does not necessarily reflect the opinions or views of the OAI investigators, the NIH, or the private funding partners.

References

  1. 1.
    Ambellan, F., Tack, A., Ehlke, M., Zachow, S.: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative. In: Medical Imaging with Deep Learning (2018). https://openreview.net/pdf?id=SJ_-Nx3jz
  2. 2.
    Bône, A., Colliot, O., Durrleman, S.: Learning distributions of shape trajectories from longitudinal datasets: a hierarchical model on a manifold of diffeomorphisms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9271–9280 (2018)Google Scholar
  3. 3.
    Fletcher, P.T.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vis. 105(2), 171–185 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry, 3rd edn. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-642-18855-8CrossRefzbMATHGoogle Scholar
  5. 5.
    Gerig, G., Fishbaugh, J., Sadeghi, N.: Longitudinal modeling of appearance and shape and its potential for clinical use. Med. Imag. Anal. 33, 114–121 (2016).  https://doi.org/10.1016/j.media.2016.06.014CrossRefGoogle Scholar
  6. 6.
    Kellgren, J., Lawrence, J.: Radiological assessment of osteo-arthrosis. Ann. Rheum. Diseases 16(4), 494 (1957)CrossRefGoogle Scholar
  7. 7.
    Kendall, D.G., Barden, D., Carne, T.K., Le, H.: Shape and Shape Theory. Wiley, Chichester (1999)CrossRefGoogle Scholar
  8. 8.
    Kim, H.J., Adluru, N., Suri, H., Vemuri, B.C., Johnson, S.C., Singh, V.: Riemannian nonlinear mixed effects models: analyzing longitudinal deformations in neuroimaging. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2540–2549 (2017)Google Scholar
  9. 9.
    Lorenzi, M., Ayache, N., Pennec, X.: Schild’s ladder for the parallel transport of deformations in time series of images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 463–474. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22092-0_38CrossRefGoogle Scholar
  10. 10.
    Louis, M., Charlier, B., Jusselin, P., Pal, S., Durrleman, S.: A fanning scheme for the parallel transport along geodesics on Riemannian manifolds. SIAM J. Num. Anal. 56(4), 2563–2584 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Muralidharan, P., Fletcher, P.T.: Sasaki metrics for analysis of longitudinal data on manifolds. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16–21, 2012. pp. 1027–1034 (2012).  https://doi.org/10.1109/CVPR.2012.6247780
  12. 12.
    Nava-Yazdani, E., Hege, H.C., Sullivan, T.J., von Tycowicz, C.: Geodesic analysis in kendall’s shape space with epidemiological applications Manuscript submitted for publication, 2018. Preprint https://arxiv.org/abs/1906.11950
  13. 13.
    O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13(4), 459–469 (1966)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sasaki, S.: On the differential geometry of tangent bundles of riemannian manifolds. Tohoku Math. J. (2) 10(3), 338–354 (1958). https://doi.org/10.2748/tmj/1178244668
  15. 15.
    Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: A hierarchical geodesic model for diffeomorphic longitudinal shape analysis. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 560–571. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38868-2_47CrossRefGoogle Scholar
  16. 16.
    Srivastava, A., Klassen, E.P.: Functional and Shape Data Analysis. SSS. Springer, New York (2016).  https://doi.org/10.1007/978-1-4939-4020-2CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Zuse Institute BerlinBerlinGermany

Personalised recommendations