Advertisement

Neurobiology of Violence

  • Mirko ManchiaEmail author
  • Linda Booij
  • Federica Pinna
  • Janice Wong
  • Florian Zepf
  • Stefano Comai
Chapter
Part of the Comprehensive Approach to Psychiatry book series (CAP, volume 1)

Abstract

The behavioural manifestations of violence are heterogeneous and result from the complex interplay of neurobiological, social, individual, economic and environmental causes. In this chapter, we have summarised the neurobiological mechanisms of violence, including neurochemical and metabolomic imbalances as well as neuroimaging and genetic/epigenetics underpinnings. Current knowledge suggests that different forms of violent behaviour (e.g. reactive versus proactive) depend on the activation of different brain circuits and neurotransmitter systems. Among them, the more solid evidence points toward the serotonin (5-HT) system in terms of changes in 5-HT levels and 5-HT receptor function, but also genetic and epigenetic modifications at the level of the enzymes involved in the synthesis, degradation and/or reuptake of 5-HT. However, no predictive biomarkers of violent behaviour have yet been identified. For this reason, future studies in large and controlled clinical and community populations examining genetic and epigenetic markers as well as behavioural-cognitive, brain imaging and metabolomics signatures of violence are warranted.

Keywords

Biosignatures Biomarkers Neuroimaging Genetics Epigenetics Metabolomics 

References

  1. 1.
    Volavka J. The neurobiology of violence. J Neuropsychiatry Clin Neurosci. 1999;11(3):307–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Rosell DR, Siever LJ. The neurobiology of aggression and violence. CNS Spectr. 2015;20(03):254–79.PubMedCrossRefGoogle Scholar
  3. 3.
    Siever LJ. Neurobiology of aggression and violence. Am J Psychiatry. 2008;165(4):429–42.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Cardwell SM, Piquero AR. Does violence in adolescence differentially predict offending patterns in early adulthood? Int J Offender Ther Comp Criminol. 2018;62(6):1603–28.PubMedCrossRefGoogle Scholar
  5. 5.
    Loeber R, Pardini D. Neurobiology and the development of violence: common assumptions and controversies. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363(1503):2491–503.CrossRefGoogle Scholar
  6. 6.
    Cauffman E, Fine A, Thomas AG, Monahan KC. Trajectories of violent behavior among females and males. Child Dev. 2017;88(1):41–54.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Mead HK, Beauchaine TP, Shannon KE. Neurobiological adaptations to violence across development. Dev Psychopathol. 2010;22(1):1–22.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Karli P, Vergnes M. Role of the rhinencephalon in the control of interspecies rat-mouse aggressive behavior. J Physiol Paris. 1963;55:272–3.PubMedGoogle Scholar
  9. 9.
    Consolo S, Garattini S, Valzelli L. Sensitivity of aggressive mice to centrally acting drugs. J Pharm Pharmacol. 1965;17(9):594.PubMedCrossRefGoogle Scholar
  10. 10.
    Garattini S, Giacalone E, Valzelli L. Isolation, aggressiveness and brain 5-hydroxytryptamine turnover. J Pharm Pharmacol. 1967;19(5):338–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Pisanu C, Congiu D, Costa M, Sestu M, Chillotti C, Ardau R, et al. No association of endocannabinoid genes with bipolar disorder or lithium response in a Sardinian sample. Psychiatry Res. 2013;210(3):887–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Manchia M, Carpiniello B, Valtorta F, Comai S. Serotonin dysfunction, aggressive behavior, and mental illness: exploring the link using a dimensional approach. ACS Chem Neurosci. 2017;8(5):961.PubMedCrossRefGoogle Scholar
  13. 13.
    Linnoila M, Virkkunen M, Scheinin M, Nuutila A, Rimon R, Goodwin FK. Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sci. 1983;33(26):2609–14.PubMedCrossRefGoogle Scholar
  14. 14.
    Virkkunen M, Goldman D, Nielsen DA, Linnoila M. Low brain serotonin turnover rate (low CSF 5-HIAA) and impulsive violence. J Psychiatry Neurosci. 1995;20(4):271–5.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Comai S, Bertazzo A, Vachon J, Daigle M, Toupin J, Côté G, et al. Tryptophan via serotonin/kynurenine pathways abnormalities in a large cohort of aggressive inmates: markers for aggression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;70:8–16.CrossRefGoogle Scholar
  16. 16.
    Kruesi MJ, Rapoport JL, Hamburger S, Hibbs E, Potter WZ, Lenane M, et al. Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Arch Gen Psychiatry. 1990;47(5):419–26.PubMedCrossRefGoogle Scholar
  17. 17.
    Moeller FG, Dougherty DM, Swann AC, Collins D, Davis CM, Cherek DR. Tryptophan depletion and aggressive responding in healthy males. Psychopharmacology. 1996;126(2):97–103.PubMedCrossRefGoogle Scholar
  18. 18.
    Kötting WF, Bubenzer S, Helmbold K, Eisert A, Gaber TJ, Zepf FD. Effects of tryptophan depletion on reactive aggression and aggressive decision-making in young people with ADHD. Acta Psychiatr Scand. 2013;128(2):114–23.PubMedCrossRefGoogle Scholar
  19. 19.
    Zimmermann M, Grabemann M, Mette C, Abdel-Hamid M, Uekermann J, Ueckermann J, et al. The effects of acute tryptophan depletion on reactive aggression in adults with attention-deficit/hyperactivity disorder (ADHD) and healthy controls. Guillemin GJ, editor. PLoS One. 2012;7(3):e32023.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    McCloskey MS, Phan KL, Angstadt M, Fettich KC, Keedy S, Coccaro EF. Amygdala hyperactivation to angry faces in intermittent explosive disorder. J Psychiatr Res. 2016;79:34–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Rosell DR, Thompson JL, Slifstein M, Xu X, Frankle WG, New AS, et al. Increased serotonin 2A receptor availability in the orbitofrontal cortex of physically aggressive personality disordered patients. Biol Psychiatry. 2010;67(12):1154–62.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cervantes MC, Biggs EA, Delville Y. Differential responses to serotonin receptor ligands in an impulsive-aggressive phenotype. Behav Neurosci. 2010;124(4):455–69.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhuang X, Gross C, Santarelli L, Compan V, Trillat AC, Hen R. Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology. 1999;21(2 Suppl):52S–60S.PubMedCrossRefGoogle Scholar
  24. 24.
    Parsey RV, Oquendo MA, Simpson NR, Ogden RT, Van Heertum R, Arango V, et al. Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using [C-11]WAY-100635. Brain Res. 2002;954(2):173–82.PubMedCrossRefGoogle Scholar
  25. 25.
    Cleare AJ, Bond AJ. Ipsapirone challenge in aggressive men shows an inverse correlation between 5-HT1A receptor function and aggression. Psychopharmacology. 2000;148(4):344–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science. 1995;268(5218):1763–6.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Checknita D, Maussion G, Labonté B, Comai S, Tremblay RE, Vitaro F, et al. Monoamine oxidase A gene promoter methylation and transcriptional downregulation in an offender population with antisocial personality disorder. Br J Psychiatry. 2015;206(3):216–22.PubMedCrossRefGoogle Scholar
  28. 28.
    Alenina N, Kikic D, Todiras M, Mosienko V, Qadri F, Plehm R, et al. Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc Natl Acad Sci U S A. 2009;106(25):10332–7.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Laas K, Kiive E, Mäestu J, Vaht M, Veidebaum T, Harro J. Nice guys: homozygosity for the TPH2-703G/T (rs4570625) minor allele promotes low aggressiveness and low anxiety. J Affect Disord. 2017;215:230–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Manchia M, Comai S, Pinna F, Pinna M, Fanos V, Denovan-Wright EM, et al. Biomarkers in aggression. Adv Clin Chem. 2019;Google Scholar
  31. 31.
    Brown GL, Goodwin FK, Ballenger JC, Goyer PF, Major LF. Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Res. 1979;1(2):131–9.CrossRefGoogle Scholar
  32. 32.
    Castellanos FX, Elia J, Kruesi MJP, Gulotta CS, Mefford IN, Potte WZ, et al. Cerebrospinal fluid monoamine metabolites in boys with attention-deficit hyperactivity disorder. Psychiatry Res. 1994;52(3):305–16.PubMedCrossRefGoogle Scholar
  33. 33.
    Placidi GP, Oquendo MA, Malone KM, Huang YY, Ellis SP, Mann JJ. Aggressivity, suicide attempts, and depression: relationship to cerebrospinal fluid monoamine metabolite levels. Biol Psychiatry. 2001;50(10):783–91.PubMedCrossRefGoogle Scholar
  34. 34.
    Prochazka H, Agren H. Self-rated aggression and cerebral monoaminergic turnover. Sex differences in patients with persistent depressive disorder. Eur Arch Psychiatry Clin Neurosci. 2003;253(4):185–92.PubMedCrossRefGoogle Scholar
  35. 35.
    Soderstrom H, Blennow K, Manhem A, Forsman A. CSF studies in violent offenders I. 5-HIAA as a negative and HVA as a positive predictor of psychopathy. J Neural Transm. 2001;108(7):869–78.PubMedCrossRefGoogle Scholar
  36. 36.
    Møller SE, Mortensen EL, Breum L, Alling C, Larsen OG, Bøge-Rasmussen T, et al. Aggression and personality: association with amino acids and monoamine metabolites. Psychol Med. 1996;26(2):323–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Limson R, Goldman D, Roy A, Lamparski D, Ravitz B, Adinoff B, et al. Personality and cerebrospinal fluid monoamine metabolites in alcoholics and controls. Arch Gen Psychiatry. 1991;48(5):437–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Crawley JN, Contrera JF. Intraventricular 6-hydroxydopamine lowers isolation-induced fighting behavior in male mice. Pharmacol Biochem Behav. 1976;4(4):381–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Kantak KM, Hegstrand LR, Eichelman B. Facilitation of shock-induced fighting following intraventricular 5,7-dihydroxytryptamine and 6-hydroxydopa. Psychopharmacology. 1981;74(2):157–60.PubMedCrossRefGoogle Scholar
  40. 40.
    Sallinen J, Haapalinna A, Viitamaa T, Kobilka BK, Scheinin M. Adrenergic alpha(2C)-receptors modulate the acoustic startle reflex, prepulse inhibition, and aggression in mice. J Neurosci. 1998;18(8):3035–42.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Fava M. Psychopharmacologic treatment of pathologic aggression. Psychiatr Clin North Am. 1997;20(2):427–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Volavka J. Can aggressive behavior in humans be modified by beta blockers? Postgrad Med. 1988;Spec No:163–8.Google Scholar
  43. 43.
    Comai S, Tau M, Gobbi G. The psychopharmacology of aggressive behavior: a translational approach: part 1: neurobiology. J Clin Psychopharmacol. 2012;32:1.CrossRefGoogle Scholar
  44. 44.
    de Almeida RM, Ferrari PF, Parmigiani S, Miczek KA. Escalated aggressive behavior: dopamine, serotonin and GABA. Eur J Pharmacol. 2005;526(1–3):51–64.PubMedCrossRefGoogle Scholar
  45. 45.
    Nelson RJ, Chiavegatto S. Molecular basis of aggression. Trends Neurosci. 2001;24(12):713–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Comai S, Tau M, Pavlovic Z, Gobbi G. The psychopharmacology of aggressive behavior: a translational approach: part 2: clinical studies using atypical antipsychotics, anticonvulsants, and lithium. J Clin Psychopharmacol. 2012;32:2.CrossRefGoogle Scholar
  47. 47.
    Miczek KA. Intraspecies aggression in rats: effects of d-amphetamine and chlordiazepoxide. Psychopharmacologia. 1974;39(4):275–301.PubMedCrossRefGoogle Scholar
  48. 48.
    Albrecht B, Staiger PK, Hall K, Miller P, Best D, Lubman DI. Benzodiazepine use and aggressive behaviour: a systematic review. Aust N Z J Psychiatry. 2014;48(12):1096–114.PubMedCrossRefGoogle Scholar
  49. 49.
    Gulsun M, Oznur T, Aydemir E, Ozcelik F, Erdem M, Zincir S, et al. Possible relationship between amino acids, aggression and psychopathy. Int J Psychiatry Clin Pract. 2016;20(2):91–100.PubMedCrossRefGoogle Scholar
  50. 50.
    Bjork JM, Moeller FG, Kramer GL, Kram M, Suris A, Rush AJ, et al. Plasma GABA levels correlate with aggressiveness in relatives of patients with unipolar depressive disorder. Psychiatry Res. 2001;101(2):131–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Lee R, Petty F, Coccaro EF. Cerebrospinal fluid GABA concentration: relationship with impulsivity and history of suicidal behavior, but not aggression, in human subjects. J Psychiatr Res. 2009;43(4):353–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Brody JF, DeFeudis PA, DeFeudis FV. Effects of micro-injections of l-glutamate into the hypothalamus on attack and flight behaviour in cats. Nature. 1969;224(5226):1330.PubMedCrossRefGoogle Scholar
  53. 53.
    Takahashi A, Lee RX, Iwasato T, Itohara S, Arima H, Bettler B, et al. Glutamate input in the dorsal raphe nucleus as a determinant of escalated aggression in male mice. J Neurosci. 2015;35(16):6452–63.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Belozertseva I, Bespalov A, Gmiro E, Danysz W, Zvartau E. Effects of NMDA receptor channel blockade on aggression in isolated male mice. Aggress Behav. 1999;25(1):48–9.Google Scholar
  55. 55.
    Navarro JF, De Castro V, Martín-López M. JNJ16259685, a selective mGlu1 antagonist, suppresses isolation-induced aggression in male mice. Eur J Pharmacol. 2008;586(1–3):217–20.PubMedCrossRefGoogle Scholar
  56. 56.
    Coccaro EF, Lee R, Vezina P. Cerebrospinal fluid glutamate concentration correlates with impulsive aggression in human subjects. J Psychiatr Res. 2013;47(9):1247–53.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    McGale EH, Pye IF, Stonier C, Hutchinson EC, Aber GM. Studies of the inter-relationship between cerebrospinal fluid and plasma amino acid concentrations in normal individuals. J Neurochem. 1977;29(2):291–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Alfredsson G, Wiesel FA, Tylec A. Relationships between glutamate and monoamine metabolites in cerebrospinal fluid and serum in healthy volunteers. Biol Psychiatry. 1988;23(7):689–97.PubMedCrossRefGoogle Scholar
  59. 59.
    Giammanco M, Tabacchi G, Giammanco S, Di Majo D, La Guardia M. Testosterone and aggressiveness. Med Sci Monit. 2005;11(4):RA136–45.PubMedGoogle Scholar
  60. 60.
    Carré JM, Geniole SN, Ortiz TL, Bird BM, Videto A, Bonin PL. Exogenous testosterone rapidly increases aggressive behavior in dominant and impulsive men. Biol Psychiatry. 2017;82(4):249–56.PubMedCrossRefGoogle Scholar
  61. 61.
    Hermans EJ, Ramsey NF, van Honk J. Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biol Psychiatry. 2008;63(3):263–70.PubMedCrossRefGoogle Scholar
  62. 62.
    Heinrichs M, von Dawans B, Domes G. Oxytocin, vasopressin, and human social behavior. Front Neuroendocrinol. 2009;30(4):548–57.PubMedCrossRefGoogle Scholar
  63. 63.
    Campbell A, Hausmann M. Effects of oxytocin on women’s aggression depend on state anxiety. Aggress Behav. 2013;39(4):316–22.PubMedCrossRefGoogle Scholar
  64. 64.
    Alcorn JL, Rathnayaka N, Swann AC, Moeller FG, Lane SD. Effects of intranasal oxytocin on aggressive responding in antisocial personality disorder. Psychol Rec. 2015;65(4):691–703.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Alcorn JL, Green CE, Schmitz J, Lane SD. Effects of oxytocin on aggressive responding in healthy adult men. Behav Pharmacol 2015;26(8 Spec No):798–804.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Berends YR, Tulen JHM, Wierdsma AI, van Pelt J, Feldman R, Zagoory-Sharon O, et al. Intranasal administration of oxytocin decreases task-related aggressive responses in healthy young males. Psychoneuroendocrinology. 2019;106:147–54.PubMedCrossRefGoogle Scholar
  67. 67.
    Ragnauth AK, Devidze N, Moy V, Finley K, Goodwillie A, Kow L-M, et al. Female oxytocin gene-knockout mice, in a semi-natural environment, display exaggerated aggressive behavior. Genes Brain Behav. 2005;4(4):229–39.PubMedCrossRefGoogle Scholar
  68. 68.
    Lee R, Ferris C, Van de Kar LD, Coccaro EF. Cerebrospinal fluid oxytocin, life history of aggression, and personality disorder. Psychoneuroendocrinology. 2009;34(10):1567–73.PubMedCrossRefGoogle Scholar
  69. 69.
    Bhatt S, Gregg TR, Siegel A. NK1 receptors in the medial hypothalamus potentiate defensive rage behavior elicited from the midbrain periaqueductal gray of the cat. Brain Res. 2003;966(1):54–64.PubMedCrossRefGoogle Scholar
  70. 70.
    Han Y, Shaikh MB, Siegel A. Medial amygdaloid suppression of predatory attack behavior in the cat: I role of a substance P pathway from the medial amygdala to the medial hypothalamus. Brain Res. 1996;716(1–2):59–71.PubMedCrossRefGoogle Scholar
  71. 71.
    Katsouni E, Sakkas P, Zarros A, Skandali N, Liapi C. The involvement of substance P in the induction of aggressive behavior. Peptides. 2009;30(8):1586–91.PubMedCrossRefGoogle Scholar
  72. 72.
    De Felipe C, Herrero JF, O’Brien JA, Palmer JA, Doyle CA, Smith AJH, et al. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature. 1998;392(6674):394–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Halasz J, Toth M, Mikics E, Hrabovszky E, Barsy B, Barsvari B, et al. The effect of neurokinin1 receptor blockade on territorial aggression and in a model of violent aggression. Biol Psychiatry. 2008;63(3):271–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Gregg TR, Siegel A. Differential effects of NK1 receptors in the midbrain periaqueductal gray upon defensive rage and predatory attack in the cat. Brain Res. 2003;994(1):55–66.PubMedCrossRefGoogle Scholar
  75. 75.
    Coccaro EF, Lee R, Owens MJ, Kinkead B, Nemeroff CB. Cerebrospinal fluid substance P-like immunoreactivity correlates with aggression in personality disordered subjects. Biol Psychiatry. 2012;72(3):238–43.PubMedCrossRefGoogle Scholar
  76. 76.
    File SE. NKP608, an NK1 receptor antagonist, has an anxiolytic action in the social interaction test in rats. Psychopharmacology. 2000;152(1):105–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Uyeno ET, Chang D, Folkers K. Substance P found to lower body temperature and aggression. Biochem Biophys Res Commun. 1979;86(3):837–42.PubMedCrossRefGoogle Scholar
  78. 78.
    Stern P, Hadzović J. Pharmacological analysis of central actions of synthetic substance P. Arch Int Pharmacodyn Ther. 1973;202(2):259–62.PubMedGoogle Scholar
  79. 79.
    Bosch OJ, Neumann ID. Vasopressin released within the central amygdala promotes maternal aggression. Eur J Neurosci. 2010;31(5):883–91.PubMedCrossRefGoogle Scholar
  80. 80.
    Delville Y, De Vries GJ, Ferris CF. Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. Brain Behav Evol. 2000;55(2):53–76.PubMedCrossRefGoogle Scholar
  81. 81.
    Delville Y, Mansour KM, Ferris CF. Serotonin blocks vasopressin-facilitated offensive aggression: interactions within the ventrolateral hypothalamus of golden hamsters. Physiol Behav. 1996;59(4–5):813–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Ferris CF, Melloni RH, Koppel G, Perry KW, Fuller RW, Delville Y. Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci. 1997;17(11):4331–40.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Wersinger SR, Ginns EI, O’Carroll A-M, Lolait SJ, Young WS. Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol Psychiatry. 2002;7(9):975–84.PubMedCrossRefGoogle Scholar
  84. 84.
    Wersinger SR, Caldwell HK, Martinez L, Gold P, Hu S-B, Young WS. Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression. Genes Brain Behav. 2007;6(6):540–51.PubMedCrossRefGoogle Scholar
  85. 85.
    Coccaro EF, Kavoussi RJ, Hauger RL, Cooper TB, Ferris CF. Cerebrospinal fluid vasopressin levels: correlates with aggression and serotonin function in personality-disordered subjects. Arch Gen Psychiatry. 1998;55(8):708–14.PubMedCrossRefGoogle Scholar
  86. 86.
    Runions KC, Morandini HAE, Rao P, Wong JWY, Kolla NJ, Pace G, et al. Serotonin and aggressive behaviour in children and adolescents: a systematic review. Acta Psychiatr Scand. 2019;139(2):117–44.PubMedCrossRefGoogle Scholar
  87. 87.
    Coccaro EF, Sripada CS, Yanowitch RN, Phan KL. Corticolimbic function in impulsive aggressive behavior. Biol Psychiatry. 2011;69(12):1153–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Klasen M, Wolf D, Eisner PD, Eggermann T, Zerres K, Zepf FD, et al. Serotonergic contributions to human brain aggression networks. Front Neurosci. 2019;13:42.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Sterzer P, Stadler C. Neuroimaging of aggressive and violent behaviour in children and adolescents. Front Behav Neurosci. 2009;3:35.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kempes M, Matthys W, De Vries H, Van Engeland H. Reactive and proactive aggression in children: a review of theory, findings and the relevance for child and adolescent psychiatry. Eur Child Adolesc Psychiatry. 2005;14(1):11–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Sturmey P, Allen JJ, Anderson CA. Aggression and violence: definitions and distinctions. In: The Wiley handbook of violence and aggression. West Sussex: John Wiley & Sons Ltd; 2017. p. 1–14.CrossRefGoogle Scholar
  92. 92.
    van Elst LT, Woermann FG, Lemieux L, Thompson PJ, Trimble MR. Affective aggression in patients with temporal lobe epilepsy: a quantitative MRI study of the amygdala. Brain. 2000;123(Pt 2):234–43.PubMedCrossRefGoogle Scholar
  93. 93.
    Coccaro EF, McCloskey MS, Fitzgerald DA, Phan KL. Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biol Psychiatry. 2007;62(2):168–78.PubMedCrossRefGoogle Scholar
  94. 94.
    Passamonti L, Crockett MJ, Apergis-Schoute AM, Clark L, Rowe JB, Calder AJ, et al. Effects of acute tryptophan depletion on prefrontal-amygdala connectivity while viewing facial signals of aggression. Biol Psychiatry. 2012;71(1):36–43.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Romero-Martinez A, Gonzalez M, Lila M, Gracia E, Marti-Bonmati L, Alberich-Bayarri A, et al. The brain resting-state functional connectivity underlying violence proneness: is it a reliable marker for neurocriminology? A systematic review. Behav Sci (Basel, Switzerland). 2019;9(1)PubMedCentralCrossRefGoogle Scholar
  96. 96.
    Ellis ML, Weiss B, Lochman JE. Executive functions in children: associations with aggressive behavior and appraisal processing. J Abnorm Child Psychol. 2009;37(7):945–56.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Baskin-Sommers AR, Waller R, Fish AM, Hyde LW. Callous-unemotional traits trajectories interact with earlier conduct problems and executive control to predict violence and substance use among high risk male adolescents. J Abnorm Child Psychol. 2015;43(8):1529–41.PubMedCrossRefGoogle Scholar
  98. 98.
    Marsh AA, Finger EC, Mitchell DGV, Reid ME, Sims C, Kosson DS, et al. Reduced amygdala response to fearful expressions in children and adolescents with callous-unemotional traits and disruptive behavior disorders. Am J Psychiatry. 2008;165(6):712–20.PubMedCrossRefGoogle Scholar
  99. 99.
    Kolla NJ, Dunlop K, Meyer JH, Downar J. Corticostriatal connectivity in antisocial personality disorder by MAO-A genotype and its relationship to aggressive behavior. Int J Neuropsychopharmacol. 2018;Google Scholar
  100. 100.
    Tuvblad C, Sild M, Frogner C, Booij L. Behavioral genetics of aggression and intermittent explosive disorder. In: Coccaro EF, editor. Intermittent explosive disorder. Amsterdam: Elsevier; 2019. p. 17–35.CrossRefGoogle Scholar
  101. 101.
    Raine A. A neurodevelopmental perspective on male violence. Infant Ment Health J. 2019;40(1):84–97.PubMedCrossRefGoogle Scholar
  102. 102.
    Vassos E, Collier DA, Fazel S. Systematic meta-analyses and field synopsis of genetic association studies of violence and aggression. Mol Psychiatry. 2014;19(4):471–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Waltes R, Chiocchetti AG, Freitag CM. The neurobiological basis of human aggression: a review on genetic and epigenetic mechanisms. Am J Med Genet B Neuropsychiatr Genet. 2016;171(5):650–75.PubMedCrossRefGoogle Scholar
  104. 104.
    Ficks CA, Waldman ID. Candidate genes for aggression and antisocial behavior: a meta-analysis of association studies of the 5HTTLPR and MAOA-uVNTR. Behav Genet. 2014;44(5):427–44.PubMedCrossRefGoogle Scholar
  105. 105.
    Tiihonen J, Rautiainen M-R, Ollila HM, Repo-Tiihonen E, Virkkunen M, Palotie A, et al. Genetic background of extreme violent behavior. Mol Psychiatry. 2015;20(6):786–92.PubMedCrossRefGoogle Scholar
  106. 106.
    Lacourse E, Boivin M, Brendgen M, Petitclerc A, Girard A, Vitaro F, et al. A longitudinal twin study of physical aggression during early childhood: evidence for a developmentally dynamic genome. Psychol Med. 2014;44(12):2617–27.PubMedCrossRefGoogle Scholar
  107. 107.
    Pingault J-B, Rijsdijk F, Zheng Y, Plomin R, Viding E. Developmentally dynamic genome: evidence of genetic influences on increases and decreases in conduct problems from early childhood to adolescence. Sci Rep. 2015;5(1):10053.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Pingault JB, Côté SM, Booij L, Ouellet-Morin I, Castellanos-Ryan N, Vitaro F, et al. Age-dependent effect of the MAOA gene on childhood physical aggression. Mol Psychiatry. 2013;18(11):1151–2.PubMedCrossRefGoogle Scholar
  109. 109.
    Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996;274(5292):1527–31.CrossRefGoogle Scholar
  110. 110.
    Reif A, Rösler M, Freitag CM, Schneider M, Eujen A, Kissling C, et al. Nature and nurture predispose to violent behavior: serotonergic genes and adverse childhood environment. Neuropsychopharmacology. 2007;32(11):2375–83.PubMedCrossRefGoogle Scholar
  111. 111.
    Provençal N, Suderman MJ, Vitaro F, Szyf M, Tremblay RE, Provencal N, et al. Childhood chronic physical aggression associates with adult cytokine levels in plasma. PLoS One. 2013;8(7):e69481.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Wang D, Szyf M, Benkelfat C, Provençal N, Turecki G, Caramaschi D, et al. Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression. PLoS One. 2012;7(6):e39501.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Guillemin C, Provençal N, Suderman M, Côté SM, Vitaro F, Hallett M, et al. DNA methylation signature of childhood chronic physical aggression in T cells of both men and women. PLoS One. 2014;9(1):e86822.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Gescher DM, Kahl KG, Hillemacher T, Frieling H, Kuhn J, Frodl T. Epigenetics in personality disorders: today’s insights. Front Psych. 2018;9:579.CrossRefGoogle Scholar
  115. 115.
    Provençal N, Booij L, Tremblay RE. The developmental origins of chronic physical aggression: biological pathways triggered by early life adversity. J Exp Biol. 2015;218(Pt 1):123–33.PubMedCrossRefGoogle Scholar
  116. 116.
    Kruger THC, Sinke C, Kneer J, Tenbergen G, Khan AQ, Burkert A, et al. Child sexual offenders show prenatal and epigenetic alterations of the androgen system. Transl Psychiatry. 2019;9(1):28.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Montalvo-Ortiz JL, Zhang H, Chen C, Liu C, Coccaro EF. Genome-wide DNA methylation changes associated with intermittent explosive disorder: a gene-based functional enrichment analysis. Int J Neuropsychopharmacol. 2018;21(1):12–20.PubMedCrossRefGoogle Scholar
  118. 118.
    Meyer-Lindenberg A, Buckholtz JW, Kolachana B, Hariri AR, Pezawas L, Blasi G, et al. Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci U S A. 2006;103(16):6269–74.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Klasen M, Wolf D, Eisner PD, Habel U, Repple J, Vernaleken I, et al. Neural networks underlying trait aggression depend on MAOA gene alleles. Brain Struct Funct. 2018;223(2):873–81.PubMedCrossRefGoogle Scholar
  120. 120.
    Denson TF, Dobson-Stone C, Ronay R, von Hippel W, Schira MM. A functional polymorphism of the MAOA gene is associated with neural responses to induced anger control. J Cogn Neurosci. 2014;26(7):1418–27.PubMedCrossRefGoogle Scholar
  121. 121.
    Clemens B, Voß B, Pawliczek C, Mingoia G, Weyer D, Repple J, et al. Effect of MAOA genotype on resting-state networks in healthy participants. Cereb Cortex. 2015;25(7):1771–81.PubMedCrossRefGoogle Scholar
  122. 122.
    Kolla NJ, Patel R, Meyer JH, Chakravarty MM. Association of monoamine oxidase-A genetic variants and amygdala morphology in violent offenders with antisocial personality disorder and high psychopathic traits. Sci Rep. 2017;7(1):9607.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci. 2003;4(12):1002–12.PubMedCrossRefGoogle Scholar
  124. 124.
    Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17(7):451–9.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Riekeberg E, Powers R. New frontiers in metabolomics: from measurement to insight. F1000Res. 2017;6:1148.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Czysz AH, South C, Gadad BS, Arning E, Soyombo A, Bottiglieri T, et al. Can targeted metabolomics predict depression recovery? Results from the CO-MED trial. Transl Psychiatry. 2019;9(1):11.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Tasic L, Pontes JGM, Carvalho MS, Cruz G, Dal Mas C, Sethi S, et al. Metabolomics and lipidomics analyses by 1H nuclear magnetic resonance of schizophrenia patient serum reveal potential peripheral biomarkers for diagnosis. Schizophr Res. 2017;185:182–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Wang H, Liang S, Wang M, Gao J, Sun C, Wang J, et al. Potential serum biomarkers from a metabolomics study of autism. J Psychiatry Neurosci. 2016;41(1):27–37.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    West PR, Amaral DG, Bais P, Smith AM, Egnash LA, Ross ME, et al. Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children. PLoS One. 2014;9(11):e112445.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Hagenbeek FA, Kluft C, Hankemeier T, Bartels M, Draisma HHM, Middeldorp CM, et al. Discovery of biochemical biomarkers for aggression: a role for metabolomics in psychiatry. Am J Med Genet B Neuropsychiatr Genet. 2016;171(5):719–32.PubMedCrossRefGoogle Scholar
  131. 131.
    Im DS. Template to perpetrate: an update on violence in autism spectrum disorder. Harv Rev Psychiatry. 2016;24(1):14–35.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Yap IKS, Angley M, Veselkov KA, Holmes E, Lindon JC, Nicholson JK. Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J Proteome Res. 2010;9(6):2996–3004.PubMedCrossRefGoogle Scholar
  133. 133.
    Ming X, Stein TP, Barnes V, Rhodes N, Guo L. Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteome Res. 2012;11(12):5856–62.PubMedCrossRefGoogle Scholar
  134. 134.
    Mavel S, Nadal-Desbarats L, Blasco H, Bonnet-Brilhault F, Barthélémy C, Montigny F, et al. 1H-13C NMR-based urine metabolic profiling in autism spectrum disorders. Talanta. 2013;114:95–102.PubMedCrossRefGoogle Scholar
  135. 135.
    Emond P, Mavel S, Aïdoud N, Nadal-Desbarats L, Montigny F, Bonnet-Brilhault F, et al. GC-MS-based urine metabolic profiling of autism spectrum disorders. Anal Bioanal Chem. 2013;405(15):5291–300.PubMedCrossRefGoogle Scholar
  136. 136.
    Cozzolino R, De Magistris L, Saggese P, Stocchero M, Martignetti A, Di Stasio M, et al. Use of solid-phase microextraction coupled to gas chromatography-mass spectrometry for determination of urinary volatile organic compounds in autistic children compared with healthy controls. Anal Bioanal Chem. 2014;406(19):4649–62.PubMedCrossRefGoogle Scholar
  137. 137.
    Noto A, Fanos V, Barberini L, Grapov D, Fattuoni C, Zaffanello M, et al. The urinary metabolomics profile of an Italian autistic children population and their unaffected siblings. J Matern Neonatal Med. 2014;27(suppl 2):46–52.CrossRefGoogle Scholar
  138. 138.
    Nadal-Desbarats L, Aïdoud N, Emond P, Blasco H, Filipiak I, Sarda P, et al. Combined 1H-NMR and 1H–13C HSQC-NMR to improve urinary screening in autism spectrum disorders. Analyst. 2014;139(13):3460–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Diémé B, Mavel S, Blasco H, Tripi G, Bonnet-Brilhault F, Malvy J, et al. Metabolomics study of urine in autism spectrum disorders using a multiplatform analytical methodology. J Proteome Res. 2015;14(12):5273–82.PubMedCrossRefGoogle Scholar
  140. 140.
    Smith AM, King JJ, West PR, Ludwig MA, Donley ELR, Burrier RE, et al. Amino acid dysregulation metabotypes: potential biomarkers for diagnosis and individualized treatment for subtypes of autism spectrum disorder. Biol Psychiatry. 2019;85(4):345–54.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mirko Manchia
    • 1
    • 2
    Email author
  • Linda Booij
    • 3
    • 4
    • 5
  • Federica Pinna
    • 1
  • Janice Wong
    • 6
    • 7
    • 8
  • Florian Zepf
    • 9
  • Stefano Comai
    • 5
    • 10
  1. 1.Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
  2. 2.Department of PharmacologyDalhousie UniversityHalifaxCanada
  3. 3.Department of PsychologyConcordia UniversityMontrealCanada
  4. 4.CHU Sainte-Justine Hospital Research CentreMontrealCanada
  5. 5.Department of PsychiatryMcGill UniversityMontrealCanada
  6. 6.Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyThe University of Western AustraliaPerthAustralia
  7. 7.Telethon Kids InstitutePerthAustralia
  8. 8.Department of HealthChild and Adolescent Health Service—Mental HealthPerthAustralia
  9. 9.Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and PsychotherapyJena University HospitalJenaGermany
  10. 10.San Raffaele Scientific Institute and Vita-Salute UniversityMilanItaly

Personalised recommendations