Production and Application of Bacillus thuringiensis for Pest Control in Egypt

  • Hussein S. SalamaEmail author


The leading role in Bacillus thuringiensis B.t. research in Egypt has been taken by the National Research Centre (NRC). The present book chapter is an account of studies that have been carried out on this pathogen in Egypt and its possible role as a biological control agent. These studies included bioassay of various cultures of B.t. to detect the potent strains versus different insect species. The introduction of agro-industrial byproducts in the fermentation media have been explored for economic commercial production of the pathogen. Attempts were made to develop feeding stimulants and bait formulations aiming to overcome short environmental persistence. Novel approaches including the use of chemical additives with B.t. formulations were adopted to enhance potency against insects through biochemical reactions that occurred in the insect midgut. Reference was given to the mode of action of B.t. and its distribution. The joint action of B.t. varieties and its integration with other microbial and chemical control agents was highlighted. Investigations on the pathogen effect on various development stages of Lepidoptera are given. Pilot scale production of B.t. has been described. Studies dealing with the large scale field application of B.t. are given. Reference has been given to the current status of genetically modified technology (GM) in Egypt.


Fermentation media Agro industrial byproducts Adjuvants Chemical additives Feeding stimulants Pilot production GM technology 



The author is greatly indebted to Dr. I. Shehata and Miss Dalal Ali, in NRC for their sincere efforts and help during the preparation of this book chapter.


  1. 1.
    Frankenhuyzen KV (1993) The challenge of Bacillus thuringiensis. In: Entwistle P, Cory J, Bailey M, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice, pp 1–35Google Scholar
  2. 2.
    Berliner E (1911) Uber die Schlaffsucht der Mehlmottenraupe. Z Gesamte Getreidewesen Berlin 3:63–70Google Scholar
  3. 3.
    Berliner E (1915) Uber die Schlaffsucht der Mehlmottenraupe. Z ang Ent 2:29–56CrossRefGoogle Scholar
  4. 4.
    Weiser J (1986) Impact of Bacillus thuringiensis on applied entomology in Eastern Europe and in the Soviet Union. In: Krieg A, Huger AM (eds) Mitteilungen aus der Biologischen Bundesanstalt für Land – und Forstwirtschaft Berlin-Dahlem, vol 233. Paul Parey, Berlin, pp 37–50Google Scholar
  5. 5.
    Steinhaus EA (1951) Possible use of Bacillus thuringiensis as an aid in the biological control of the alfalfa caterpillar. Hilgardia 20:359–381CrossRefGoogle Scholar
  6. 6.
    Dulmage HT (1970) Production of the spore-δ-endotoxin complex by variants of Bacillus thuringiensis in two fermentation media. J Invertebr Pathol 16:385–389CrossRefGoogle Scholar
  7. 7.
    Menn JJ (1960) Bioassay of a microbial insecticide containing spores of Bacillus thuringiensis. J Insect Pathol 2:134–138Google Scholar
  8. 8.
    Krieg A (1965) Über die vivo-titration von insektenpathogenen, speziell von Bacillus thuringiensis. Entomophaga 10:3–20CrossRefGoogle Scholar
  9. 9.
    Burges HD (1967) The standardization of products based on Bacillus thuringiensis. In: van der Laan (ed) Insect pathology and microbial control. North Holland Publication Co, Amsterdam, pp 306–314Google Scholar
  10. 10.
    Dulmage HT, Rhodes RA (1971) Production of pathogens in artificial media. In: Burges HD, Hussey NW (eds) Microbial control of insects and mites. Acad Press, London, pp 507–540Google Scholar
  11. 11.
    Becker N, Margalit J (1993) Use of Bacillus thuringiensis israelensis against mosquitoes and blackflies. In: Entwistle P, Cory J, Bailey M, Higgs S (eds) Bacillus thuringiensis. An environmental biopesticide: theory and practice. Wiley, pp 147–170Google Scholar
  12. 12.
    Goldberg LH, Margalit J (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergenti, Uranotaenia unguiculata, Culex univattatus, Aedes aegyptü and Culex pipiens. Mosq News 37:355–358Google Scholar
  13. 13.
    Margalit J, Dean D (1985) The story of Bacillus thuringiensis israelensis. J Am Mosq Control Assoc 1:1–7Google Scholar
  14. 14.
    Padua LE, Ohba M, Aizawa K (1984) Isolation of Bacillus thuringiensis strain (serotype 8a: 8b) highly and selectively toxic against mosquito larvae. J Invertebr Pathol 44:12–17CrossRefGoogle Scholar
  15. 15.
    Keller B, Langenbruch G (1993) Control of coleopteran pests by Bacillus thuringiensis. In: Entwhistle P, Cory J, Bailey M, Higgs S (eds) Bacillus thuringiensis. An environmental biopesticide theory and practice. Wiley, pp 171–191Google Scholar
  16. 16.
    Huger AM, Krieg A (1989) Über zwei typen parasporaler kristalle beim käferwirksamen stamm BI. 256-82 von Bacillus thuringiensis subsp. tenebrionis. J Appl Entomol 108:490–497CrossRefGoogle Scholar
  17. 17.
    Krieg A, Huger AM, Langenbruch GA, Schnetter W (1983) Bacillus thuringiensis var. tenebrionis: ein neuer gegenüber larven von Coleopteran wirksamer Pathotyp. Z ang Ent 96:500–508CrossRefGoogle Scholar
  18. 18.
    Höfte H, Whitely H (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255Google Scholar
  19. 19.
    Agaisse H, Lereclus D (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol 177:6027–6032CrossRefGoogle Scholar
  20. 20.
    Lereclus D, Agaisse H, Gominet M, Chaufaux J (1995) Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spo0A mutant. Biotechnology (N Y) 13:67–71Google Scholar
  21. 21.
    Lecadet M, De Barjac H (1981) Bacillus thuringiensis beta-exotoxin. In: Davidson E (ed) Pathogenesis of invertebrate microbial diseases. Allanheld Osmun and Co., New Jersey, pp 293–316Google Scholar
  22. 22.
    Salama HS, Sharaby A, Ragaei M (1983) Chemical changes in the haemolymph of Spodoptera littoralis as affected by Bacillus thuringiensis. Entomophaga 28:331–337Google Scholar
  23. 23.
    Salama HS (1984) Bacillus thuringiensis Berliner and its role as a biological control agent in Egypt. Z ang Ent 98:206–220CrossRefGoogle Scholar
  24. 24.
    Boctor I, Salama H (1983) Effect of Bacillus thuringiensis on the lipid content and composition of Spodoptera littoralis larvae. J Invertebr Pathol 41:381–384CrossRefGoogle Scholar
  25. 25.
    Salama HS, Sharaby A (1985) Histopathological changes in Heliothis armigera infected with Bacillus thuringiensis as detected by electron microscopy. Insect Sci Appl 4:503–511Google Scholar
  26. 26.
    Sutter GR, Raun ES (1967) Histopathology of European corn borer larvae, treated with Bacillus thuringiensis. J Invertebr Pathol 9:90–103CrossRefGoogle Scholar
  27. 27.
    Reese J, Yonke T, Fairchild M (1972) Fine structure of the midgut epithelium in larvae of Agrotis ypsilon. J Kansas Entomol Soc 45:242–251Google Scholar
  28. 28.
    Cheung P, Grula EA, Burton RL (1978) Haemolymph responses in Heliothis zea to inoculation with Bacillus thuringiensis or Micrococcus lysodeikticus. J Invertebr Pathol 3:148–156CrossRefGoogle Scholar
  29. 29.
    Salama HS, Foda MS, Dulmage HT, El-Sharaby A (1983) Novel fermentation media for production of δ-endotoxins from Bacillus thuringiensis. J Invertebr Pathol 41:8–19CrossRefGoogle Scholar
  30. 30.
    Salama HS, Foda MS, El-Sharaby A, Selim M (1983) A novel approach for whey recycling in production of bacterial insecticides. Entomophaga 28:151–160CrossRefGoogle Scholar
  31. 31.
    Salama HS, Foda MS, Selim MH, El-Sharaby A (1983) Utilization of fodder yeast and agro-industrial byproducts in production of spores and biologically active endotoxins from Bacillus thuringiensis. Zentralblatt Mikrobiol 138:553–563CrossRefGoogle Scholar
  32. 32.
    Salama HS, Morris O (1993) The use of Bacillus thuringiensis in developing countries. In: Entwistle P, Cory J, Bailey M, Higgs S (eds) Bacillus thuringiensis. An environmental biopesticide: theory and practice. Wiley, pp 237–253Google Scholar
  33. 33.
    Dulmage HT (1971) Production of δ-endotoxin by eighteen isolates of Bacillus thuringiensis serotype 3, in 3 fermentation media. J Invertebr Pathol 18:353–358CrossRefGoogle Scholar
  34. 34.
    Nagamma MV, Ragnathan AN, Majumder SK (1972) A new medium for Bacillus thuringiensis Berliner. J Appl Bact 35:367–370CrossRefGoogle Scholar
  35. 35.
    Fernandez WL, Ocampo TA, Perez DC (1974) Coconut water in three media reduces cell yield of Bacillus thuringiensis var. thuringiensis. Philipp Agric 28:273–279Google Scholar
  36. 36.
    Foda MS, Salama HS, Fadel M (1993) Local production of Bacillus thuringiensis in Egypt. Advantages and constraints. In: Salama H, Morris O, Rached E (eds) The biopesticide Bacillus thuringiensis and its application in developing countries, pp 149–165Google Scholar
  37. 37.
    Madkour MA (2000) Egypt: biotechnology from laboratory to the marketplace: challenges and opportunities. In: Persley HJ, Lantin MM (eds) Agriculture biotechnology and the poor: proceeding of an international conference, Washington DC, 21–29 OctGoogle Scholar
  38. 38.
    Salama HS, Foda S, Zaki F, Khalafallah A (1983) Persistance of Bacillus thuringiensis Berliner spores in cotton cultivations. Z ang Ent 95:321–326CrossRefGoogle Scholar
  39. 39.
    Salama HS, Zaki F (1985) Application of Bacillus thuringiensis Berliner and its potency for control of Spodoptera littoralis (Boisd.). Z ang Ent 99:425–431CrossRefGoogle Scholar
  40. 40.
    Ragaei M (1985) Studies on the effect of some environmental and chemical factors on the potency of Bacillus thuringiensis against some cotton pests. M.Sc. thesis, Cairo University, EgyptGoogle Scholar
  41. 41.
    Morris O, Moore A (1975) Studies on the protection of insect pathogens from sunlight inactivation II. Preliminary field trials. Report Cc-x-113, Chemical Control Research Institute, 34 pp (8)Google Scholar
  42. 42.
    Hamed A, Hassanein F (1985) Persistance and virulence of Bacillus thuringiensis under sunny and shady conditions. Bull Entomol Soc Egypt Econ Ser 14:73–77Google Scholar
  43. 43.
    Morris O (1983) Protection of Bacillus thuringiensis from inactivation by sunlight. Can Entomol 115:1215–1227CrossRefGoogle Scholar
  44. 44.
    Salama HS, Foda S, Selim M (1984) Isolation of Bacillus thuringiensis mutants resistant to physical and chemical factors. Z ang Ent 97:139–145CrossRefGoogle Scholar
  45. 45.
    Salama HS, Foda S, Selim M (1984) Mutation in relation to sporulation and potency of Bacillus thuringiensis vs. cotton pests. Z ang Ent 97:29–36CrossRefGoogle Scholar
  46. 46.
    Matter M (1993) Bacillus thuringiensis and environmental safety. In: Salama HS, Morris O, Rached E (eds) The biopesticide Bacillus thuringiensis and its applications in developing countries, pp 257–265Google Scholar
  47. 47.
    Salama HS, Zaki FN, Sharaby AF (1982) Effect of Bacillus thuringiensis Berl. on parasites and predators of the cotton leafworm Spodoptera littoralis (Boisd.). Z ang Ent 94:498–504CrossRefGoogle Scholar
  48. 48.
    Salama HS, Zaki FN (1983) Interaction between Bacillus thuringiensis Berliner and the parasites and predators of Spodoptera littoralis in Egypt. Z ang Ent 95:425–429CrossRefGoogle Scholar
  49. 49.
    Salama HS, Zaki FN (1984) Impact of Bacillus thuringiensis Berl. on the predator complex of Spodoptera littoralis (Boisd.) in cotton fields. Z ang Ent 97:485–490CrossRefGoogle Scholar
  50. 50.
    Salama HS, Zaki FN (1985) Biological effects of Bacillus thuringiensis on the egg parasitoid Trichogramma evanescens. Insect Sci Appl 6:145–148CrossRefGoogle Scholar
  51. 51.
    Afify AM (1964) Bioassay of three bacterial insecticides on the base of Bacillus thuringiensis Berliner, using its original host Anagasta kuehniella as a test insect. Bull Soc Entomol Egypt 48:103–109Google Scholar
  52. 52.
    Afify AM (1965) Studies on the susceptibility of certain stored products insects to bacterial insecticides: 1-tests with “Bakthane L-69”. Bull Soc Entomol Egypt 49:59–64Google Scholar
  53. 53.
    Afify AM (1968) Bioassay of “Biospore 2902” using two species of lepidopterous larvae of different susceptibility levels. J Invertebr Pathol 10:283–286CrossRefGoogle Scholar
  54. 54.
    Afify AM, Merdan AI (1969) On tracing the response of some Egyptian cotton worms in different larval ages to Bacillus thuringiensis Berliner. Z ang Ent 63:263–267CrossRefGoogle Scholar
  55. 55.
    Afify A, Hafez M, Merdan A (1969) Preliminary investigations on the virulence of 13 Bacillus preparations against 3 Egyptian noctuids. Anz Schadlingsk Pflanz Unwelt 42:54–57Google Scholar
  56. 56.
    Afify AM, El-Sawaf S, Habib E, Hammad SM (1970) Pathogenicity tests of Biotrol BTB process 183, on Anagasta kuehniella Zeller. Z ang Ent 65:29–37CrossRefGoogle Scholar
  57. 57.
    Soliman A, Afify A, Abdel-Rahman H, Atwa W (1970) Effectiveness of different components of Bacillus thuringiensis against three larval stages of Pieris rapae. Anz Schadlingsk Pflanz Umwelt 43:161–165Google Scholar
  58. 58.
    Salama HS, Foda MS, El-Sharaby A (1981) Potency of spore endotoxin complexes of Bacillus thuringiensis against some cotton pests. Z ang Ent 91:388–398CrossRefGoogle Scholar
  59. 59.
    Salama HS, Foda MS (1982) A strain of Bacillus thuringiensis var. entomocidus with high potential activity on Spodoptera littoralis. J Invertebr Pathol 39:110–111CrossRefGoogle Scholar
  60. 60.
    Salama HS, Foda MS (1984) Studies on the susceptibility of some cotton pests to various strains of Bacillus thuringiensis. J Plant Dis Prot 91:65–70Google Scholar
  61. 61.
    Abul-Nasr S, Abdallah MD (1969) Lethal and sublethal action of Bacillus thuringiensis Berliner on the cotton leafworm Spodoptera littoralis (Biosd.). Bull Entomol Soc Egypt Econ Ser 4:151–160Google Scholar
  62. 62.
    Abdallah MD, Abul-Nasr S (1970) Feeding behavior of the cotton leafworm Spodoptera littoralis (Boisd.) sublethally infected with Bacillus thuringiensis Berliner. Bull Entomol Soc Egypt Econ Ser 4:161–170Google Scholar
  63. 63.
    Abdallah MD, Abul-Nasr S (1970) Effect of Bacillus thuringiensis Berliner on reproductive potential of the cotton leafworm (Lep., Noctuidae). Bull Entomol Soc Egypt Econ Ser 4:171–176Google Scholar
  64. 64.
    Afify AM, Matter MM (1969) Retarded effect of Bacillus thuringiensis Zell. Entomophaga 14:447–456CrossRefGoogle Scholar
  65. 65.
    Afify A, Hafez M, Matter M (1971) The retarding effect of Bacillus thuringiensis on larval development of flour moth Anagasta kuehniella with a new method of determining the duration of instars. Acta Entomol Bohemoslov 68:6–14Google Scholar
  66. 66.
    Matter M, Zohdy N (1981) Biotic efficiency of Bacillus thuringiensis and a nuclear polyhedrosis virus on larvae of the American bollworm Heliothis armigera. Z ang Ent 92:336–343CrossRefGoogle Scholar
  67. 67.
    Salama HS, Sharaby A (1988) Effects of exposure to sublethal levels of Bacillus thuringiensis on the development of the greasy cutworm Agrotis ypsilon (Hbn). Z ang Ent 106:396–401Google Scholar
  68. 68.
    Salama HS, Foda S, Zaki F, Ragaei M (1986) On the distribution of Bacillus thuringiensis and closely related Bacillus cereus in Egyptian soils and their activity against Lepidopterous cotton pests. Z ang Zool 73:257–265Google Scholar
  69. 69.
    Abdel-Rahman H (1966) Study of the pathogenicity of crystalline inclusion of Bacillus thuringiensis. Ain Shams Sci Bull 10:89–95Google Scholar
  70. 70.
    Abul-Nasr S, Ammar E, Merdan A, Farrag S (1979) Infectivity tests on Bacillus thuringiensis and B. cereus isolated from resting larvae of Pectinophora gossypiella. Z ang Ent 88:60–69CrossRefGoogle Scholar
  71. 71.
    Abdel Ghany N (2006) Studies on the potential activity and molecular characterization of Bacillus thuringiensis isolated from Lepidopterous cotton insects and soil in Egypt. M.Sc. thesis, Ain Shams University, EgyptGoogle Scholar
  72. 72.
    Delucca A, Simonsen JG, Larson A (1981) Bacillus thuringiensis distribution in soils of the United States. Can J Microbiol 27:865–870CrossRefGoogle Scholar
  73. 73.
    Anwar M, Sohel A, Sirajul H (1997) Abundance and distribution of Bacillus thuringiensis in the agricultural soil of Bangladesh. J Invertebr Pathol 70:221–225CrossRefGoogle Scholar
  74. 74.
    Morris O, Converse V, Kanagaratnam P, Cote J (1998) Isolation, characterization and culture of Bacillus thuringiensis from soil and dust from grain storage bins and their toxicity for Mamestra configurata. Can Entomol 130:515–537CrossRefGoogle Scholar
  75. 75.
    Ali A, Watson T (1982) Effect of Bacillus thuringiensis var. kurstaki on tobacco budworm adult and egg stages. J Econ Ent 75:596–598CrossRefGoogle Scholar
  76. 76.
    Potter M, Jensen M, Watson T (1983) Influence of sweet bait Bacillus thuringiensis var. kurstaki combinations on adult tobacco budworm. J Econ Entomol 75:1157–1160CrossRefGoogle Scholar
  77. 77.
    Salama HS (1985) Control of Spodoptera littoralis through moth and eggs treatment with Bacillus thuringiensis. Insect Sci Appl 6:49–53CrossRefGoogle Scholar
  78. 78.
    Salama HS, Zaki F (1986) Effects of Bacillus thuringiensis Berliner on prepupal and pupal stages of Spodoptera littoralis. Insect Sci Appl 7:747–749Google Scholar
  79. 79.
    Abdallah M, Zaazou H, El-Tantawi M (1974) Wirkung eines Bacillus thuringiensis preparats und eines Juvenile hormone – Analogous über dem erdboden auf Spodoptera littoralis. Anz Schadlingsk Pflanz Umwelt 47:170–172CrossRefGoogle Scholar
  80. 80.
    Salama HS, Foda MS, Zaki FN, Moawad S (1984) Potency of combinations of Bacillus thuringiensis and chemical insecticides on Spodoptera littoralis (Lepidoptera: Noctuidae). J Econ Entomol 77:885–890CrossRefGoogle Scholar
  81. 81.
    Abdallah M (1969) The joint action of microbial and chemical insecticides on the cotton leafworm Spodoptera littoralis. Bull Entomol Soc Egypt Econ Ser 3:201–217Google Scholar
  82. 82.
    Altahtawy M, Abaless I (1972) Thuricide 90 Ts flowable, a recent approach to the biological control of Spodoptera littoralis. Z ang Ent 72:299–308CrossRefGoogle Scholar
  83. 83.
    Altahtawy M, Abaless I (1973) An integrated control trial of Spodoptera littoralis (Boisd.) using Bacillus thuringiensis associated with insecticides. Z ang Ent 74:255–263CrossRefGoogle Scholar
  84. 84.
    Salama HS, Moawed S, Zaki F (1987) Effects of nuclear polyhedrosis virus—Bacillus thuringiensis combinations on Spodoptera littoralis (Roisd.). Z ang Ent 104:22–27Google Scholar
  85. 85.
    Salama HS, Foda S, El-Sharaby A (1983) Biological activity of mixtures of Bacillus thuringiensis against some cotton pests. Z ang Ent 95:69–74CrossRefGoogle Scholar
  86. 86.
    Salama HS, Foda S, Sharaby A (1985) Role of feeding stimulants in increasing the potency of Bacillus thuringiensis vs. Spodoptera littoralis. Entomol Gener 10:111–119CrossRefGoogle Scholar
  87. 87.
    El-Nockrashy S, Salama HS, Taha F (1984) Developemt of bait formulations for control of Spodoptera littoralis. Z ang Ent 103:313–319Google Scholar
  88. 88.
    Charles C, Wallis R (1964) Enhancement of the action of Bacillus thuringiensis var. thuringiensis on Porthetria dispar (Linn.) in laboratory tests. J Insect Pathol 6:423–429Google Scholar
  89. 89.
    Smirnoff WA (1974) The symptoms of infection by Bacillus thuringiensis and chitinase formulation in larvae of Choristoneura fumiferana. J Invertebr Pathol 23:397–399CrossRefGoogle Scholar
  90. 90.
    Burges HD (1977) Control of the waxmoth Galleria mellonella on beecomb by H-serotype v Bacillus thuringiensis and the effect of chemical additives. Apidologie 8:155–168CrossRefGoogle Scholar
  91. 91.
    Couch TL, Ross D (1980) Production and utilization of Bacillus thuringiensis. Biotechnol Bioeng 22:1297–1304CrossRefGoogle Scholar
  92. 92.
    Narayanan K, Govindarajan R, Jayaraj S (1976) Role of alkali components and gut microflorae of Papilio demoleus L. and Spodoptera litura F. in the mode of action of Bacillus thuringiensis Berliner. Madras Agric J 64:344–346Google Scholar
  93. 93.
    Nickerson KW (1980) Structure and function of Bacillus thuringiensis protein crystal. Biotechnol Bioeng 22:1305–1333CrossRefGoogle Scholar
  94. 94.
    Dixon M, Webb EC (1964) Enzymes. Academic Press Inc., New York, pp 67–70Google Scholar
  95. 95.
    Endo Y, Nishitsuji-Uwo (1980) Mode of action of Bacillus thuringiensis δ-endotoxins: histopathological changes in the silkworm midgut. J Invertebr Pathol 36:90–103Google Scholar
  96. 96.
    Wigglesworth VB (1972) The principles of insect physiology. English Language Book Society, Chapman Hall, EnglandCrossRefGoogle Scholar
  97. 97.
    Patti H, Carver GR (1974) Bacillus thuringiensis investigation for control of Heliothus spp. on cotton. J Econ Entomol 67:415–418CrossRefGoogle Scholar
  98. 98.
    Salama HS, Foda S, El-Sharaby A, Matter M, Khalafallah M (1981) Development of some lepidopterous cotton pests as affected by exposure to sublethal levels of endotoxins of Bacillus thuringiensis for different periods. J Invertebr Pathol 38:220–229CrossRefGoogle Scholar
  99. 99.
    Salama HS, Salem S, Zaki F, Matter M (1990) Control of Agrotis ypsilon on some vegetable crops in Egypt using the microbial agent Bacillus thuringiensis. Anz Schadlingsk Pflanz Umwelt 63:147–151CrossRefGoogle Scholar
  100. 100.
    Salama HS, Salem S, Matter M (1991) Field evaluation of the potency of Bacillus thuringiensis on lepidopterous insects infesting some field crops in Egypt. Anz Schadlingskd Pflanz Umwelt 64:150–154CrossRefGoogle Scholar
  101. 101.
    Pilcher CD, Rice M, Obrycki J, Lewis L (1997) Field and laboratory evaluation of transgenic Bacillus thuringiensis corn on secondary Lepidopteran pests (Lepidoptera: Noctuidae). J Econ Entomol 90:669–678CrossRefGoogle Scholar
  102. 102.
    Assem SK (2014) Opportunities and challenges of commercializing biotech products in Egypt: Bt. maize, a case study. In: Wambugu F, Kammanga D (eds) Biotechnology in Africa: emergence, initiatives and future, pp 37–47Google Scholar
  103. 103.
    El-Banna H (2011) Terza Giornata Mondiale del Mais, Bioenergy, Italy. Maize production in Egypt. Al-Ahram Agriculture, Cremona, 18–20 Mar 2011Google Scholar
  104. 104.
    Saker M, Salama HS, Salama M, El-Banna A, Abdel-Ghany N (2011) Production of transgenic tomato plants expressing Cry 2 Ab gene for the control of some lepidopterous insects endemic in Egypt. J Genetic Eng Biotechnol 9:149–155CrossRefGoogle Scholar
  105. 105.
    Salama HS, Foda S, Sharaby A (1984) Novel biochemical avenues for enhancing Bacillus thuringiensis endotoxin potency against Spodoptera litoralis. Entomophaga 29:171–178CrossRefGoogle Scholar
  106. 106.
    Salama HS, Foda S, Sharaby A (1986) Possible extension of the activity spectrum of Bacillus thuringiensis strains through chemical additives. J Appl Ent 101:304–313CrossRefGoogle Scholar
  107. 107.
    Salama HS (1993) Enhancement of Bacillus thuringiensis for field application. In: Salama HS, Morris O, Rached E (eds) The biopesticide Bacillus thuringiensis and its application in developing countries. Al-Ahram Press, Cairo, pp 105–116Google Scholar
  108. 108.
    Osman GEH, Already R, Assaeedi ASA, Organji SR El-Ghareeb D, Abulreesh HH, Althubiani AS (2015) Bioinsecticide Bacillus thuringiensis a comprehensive review. Egypt J Biol Pest Control 25:271–288Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Pests and Plant Protection DepartmentNational Research CentreDokki, CairoEgypt

Personalised recommendations