Techniques and Applications in Skin OCT Analysis

  • Ai Ping Yow
  • Ruchir Srivastava
  • Jun Cheng
  • Annan Li
  • Jiang Liu
  • Leopold Schmetterer
  • Hong Liang Tey
  • Damon W. K. Wong
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1213)


The skin is the largest organ of our body. Skin disease abnormalities which occur within the skin layers are difficult to examine visually and often require biopsies to make a confirmation on a suspected condition. Such invasive methods are not well-accepted by children and women due to the possibility of scarring. Optical coherence tomography (OCT) is a non-invasive technique enabling in vivo examination of sub-surface skin tissue without the need for excision of tissue. However, one of the challenges in OCT imaging is the interpretation and analysis of OCT images. In this review, we discuss the various methodologies in skin layer segmentation and how it could potentially improve the management of skin diseases. We also present a review of works which use advanced machine learning techniques to achieve layers segmentation and detection of skin diseases. Lastly, current challenges in analysis and applications are also discussed.


Skin Optical coherence tomography (OCT) Roughness Dermal-epidermal junction (DEJ) Basal cell carcinoma (BCC) Epidermis Dermis Segmentation Graph Deep learning 


  1. 1.
    Fercher AF, Mengedoht K, Werner W (1988) Eye-length measurement by interferometry with partially coherent light. Opt Lett 13(3):186–188. CrossRefPubMedGoogle Scholar
  2. 2.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al (1991) Optical coherence tomography. Science (New York, NY) 254(5035):1178–1181CrossRefGoogle Scholar
  3. 3.
    Mamalis A, Ho D, Jagdeo J (2015) Optical coherence tomography imaging of normal, chronologically aged, photoaged and photodamaged skin: a systematic review. Dermatol Surg 41(9):993–1005. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Li A, Cheng J, Yow AP, Wall C, Wong DWK, Tey HL, Liu J (2015) Epidermal segmentation in high-definition optical coherence tomography. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 25–29 Aug. 2015, pp 3045–3048.
  5. 5.
    Yow AP, Cheng J, Li A, Wall C, Wong DWK, Liu J, Tey HL (2015) Skin surface topographic assessment using in vivo high-definition optical coherence tomography. In: 2015 10th International Conference on Information, Communications and Signal Processing (ICICS), 2–4 Dec. 2015, pp 1–4.
  6. 6.
    Srivastava R, Yow AP, Cheng J, Wong DWK, Tey HL (2017) Supervised 3D graph-based automated epidermal thickness estimation. In: 2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP), 4–6 Aug. 2017, pp 297–301.
  7. 7.
    Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26(9):1124–1137. CrossRefGoogle Scholar
  8. 8.
    Kang L, Xiaodong W, Chen DZ, Sonka M (2006) Optimal surface segmentation in volumetric images-a graph-theoretic approach. IEEE Trans Pattern Anal Mach Intell 28(1):119–134. CrossRefGoogle Scholar
  9. 9.
    Srivastava R, Yow AP, Cheng J, Wong DWK, Tey HL (2018) Three-dimensional graph-based skin layer segmentation in optical coherence tomography images for roughness estimation. Biomed Opt Express 9(8):3590–3606. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Weissman J, Hancewicz T, Kaplan P (2004) Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis. Opt Express 12(23):5760–5769. CrossRefPubMedGoogle Scholar
  11. 11.
    Josse G, George J, Black D (2011) Automatic measurement of epidermal thickness from optical coherence tomography images using a new algorithm. Skin Res Technol 17(3):314–319. CrossRefPubMedGoogle Scholar
  12. 12.
    Taghavikhalilbad A, Adabi S, Clayton A, Soltanizadeh H, Mehregan D, Avanaki MRN (2017) Semi-automated localization of dermal epidermal junction in optical coherence tomography images of skin. Appl Opt 56(11):3116–3121. CrossRefPubMedGoogle Scholar
  13. 13.
    Askaruly S, Ahn Y, Kim H, Vavilin A, Ban S, Kim PU, Kim S, Lee H, Jung W (2019) Quantitative evaluation of skin surface roughness using optical coherence tomography in vivo. IEEE J Sel Top Quantum Electron 25(1):1–8. CrossRefGoogle Scholar
  14. 14.
    Yow AP, Cheng J, Li A, Srivastava R, Liu J, Wong DWK, Tey HL (2016) Automated in vivo 3D high-definition optical coherence tomography skin analysis system. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 16–20 Aug. 2016, pp 3895–3898.
  15. 15.
    Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks, vol 25. CrossRefGoogle Scholar
  16. 16.
    Rawat W, Wang Z (2017) Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput 29(9):2352–2449. CrossRefPubMedGoogle Scholar
  17. 17.
    Greenspan H, Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35(5):1153–1159. CrossRefGoogle Scholar
  18. 18.
    Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. CrossRefGoogle Scholar
  19. 19.
    Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, Geis JR, Pandharipande PV, Brink JA, Dreyer KJ (2018) Current applications and future impact of machine learning in radiology. Radiology 288(2):318–328. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, Tan GSW, Schmetterer L, Keane PA, Wong TY (2019) Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol 103(2):167–175. CrossRefPubMedGoogle Scholar
  21. 21.
    Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP (2018) Machine learning in cardiovascular medicine: are we there yet? Heart 104(14):1156–1164. CrossRefPubMedGoogle Scholar
  22. 22.
    Levine AB, Schlosser C, Grewal J, Coope R, Jones SJM, Yip S (2019) Rise of the machines: advances in deep learning for cancer diagnosis. Trends Cancer 5(3):157–169. CrossRefPubMedGoogle Scholar
  23. 23.
    Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115. CrossRefPubMedGoogle Scholar
  24. 24.
    Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, Kalloo A, Hassen ABH, Thomas L, Enk A, Uhlmann L (2018) Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 29(8):1836–1842. CrossRefPubMedGoogle Scholar
  25. 25.
    Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE (2018) Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J Invest Dermatol 138(7):1529–1538. CrossRefPubMedGoogle Scholar
  26. 26.
    Marchetti MA, Codella NCF, Dusza SW, Gutman DA, Helba B, Kalloo A, Mishra N, Carrera C, Celebi ME, DeFazio JL, Jaimes N, Marghoob AA, Quigley E, Scope A, Yelamos O, Halpern AC (2018) Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. J Am Acad Dermatol 78(2):270–277.e271. CrossRefGoogle Scholar
  27. 27.
    Mandache D, Dalimier E, Durkin JR, Boceara C, Olivo-Marin J, Meas-Yedid V (2018) Basal cell carcinoma detection in full field OCT images using convolutional neural networks. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 4–7 April 2018, pp 784–787.
  28. 28.
    Boone M, Suppa M, Miyamoto M, Marneffe A, Jemec G, Del Marmol V (2016) In vivo assessment of optical properties of basal cell carcinoma and differentiation of BCC subtypes by high-definition optical coherence tomography. Biomed Opt Express 7(6):2269–2284. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Li A, Cheng J, Yow AP, Srivastava R, Wong DW, Hong Liang T, Jiang L (2016) Automated basal cell carcinoma detection in high-definition optical coherence tomography. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference 2016:2885–2888.
  30. 30.
    Pfister M, Schutzenberger K, Pfeiffenberger U, Messner A, Chen Z, Dos Santos VA, Puchner S, Garhofer G, Schmetterer L, Groschl M, Werkmeister RM (2019) Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks. Biomed Opt Express 10(3):1315–1328. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Cham, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing, pp 234–241Google Scholar
  32. 32.
    Santos VA, Schmetterer L, Stegmann H, Pfister M, Messner A, Schmidinger G, Garhofer G, Werkmeister RM (2019) CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning. Biomed Opt Express 10(2):622–641. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, Askham H, Glorot X, O’Donoghue B, Visentin D, van den Driessche G, Lakshminarayanan B, Meyer C, Mackinder F, Bouton S, Ayoub K, Chopra R, King D, Karthikesalingam A, Hughes CO, Raine R, Hughes J, Sim DA, Egan C, Tufail A, Montgomery H, Hassabis D, Rees G, Back T, Khaw PT, Suleyman M, Cornebise J, Keane PA, Ronneberger O (2018) Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 24(9):1342–1350. CrossRefGoogle Scholar
  34. 34.
    Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ai Ping Yow
    • 1
    • 2
    • 3
  • Ruchir Srivastava
    • 4
  • Jun Cheng
    • 5
  • Annan Li
    • 6
  • Jiang Liu
    • 5
    • 7
  • Leopold Schmetterer
    • 2
    • 3
    • 8
    • 9
  • Hong Liang Tey
    • 10
    • 11
    • 12
  • Damon W. K. Wong
    • 1
    • 2
    • 3
  1. 1.Institute for Health Technologies, Nanyang Technological UniversitySingaporeSingapore
  2. 2.SERI-NTU Advanced Ocular Engineering (STANCE)SingaporeSingapore
  3. 3.Singapore Eye Research Institute, Singapore National Eye CentreSingaporeSingapore
  4. 4.Institute for Infocomm Research, A∗STARSingaporeSingapore
  5. 5.Cixi Institute of Biomedical Engineering, Chinese Academy of SciencesBeijingChina
  6. 6.Beihang UniversityBeijingChina
  7. 7.Southern University of Science and TechnologyShenzhenChina
  8. 8.Center for Medical Physics and Biomedical Engineering, Medical University of ViennaViennaAustria
  9. 9.Department of Clinical PharmacologyMedical University of ViennaViennaAustria
  10. 10.National Skin CentreSingaporeSingapore
  11. 11.Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
  12. 12.Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations