Advertisement

Current State and Challenges of Big Data

  • Yassine BenlachmiEmail author
  • Moulay Lahcen HsnaouiEmail author
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 92)

Abstract

Big Data is the complex, bulky, growing set of data coming from independent sources. In today’s modern age Big data has an essential part in nearly every field of human life including science, engineering, social, biological and biomedical departments. In the following paper importance of big data, stream learning, deep learning, Hadoop and its application are discussed.

Keywords

Big Data Machine learning Stream learning Hadoop 

References

  1. 1.
    Labrinidis, A., Jagadish, H.: Challenges and opportunities with big data. Proc. VLDB Endowment 5, 2032–2033 (2012).  https://doi.org/10.14778/2367502.2367572CrossRefGoogle Scholar
  2. 2.
    Stouky, A., Jaoujane, B., Daoudi, R., Chaoui, H.: Improving Software Automation Testing Using Jenkins, and Machine Learning Under Big Data (2019). Accessed 24 Apr 2019Google Scholar
  3. 3.
    Saraladevi, B., Pazhaniraja, N., Paul, P., et al.: Big data and hadoop-a study in security perspective. Procedia Comput. Sci. 50, 596–601 (2015).  https://doi.org/10.1016/j.procs.2015.04.091CrossRefGoogle Scholar
  4. 4.
    Ji, C.: Big data processing in cloud computing environments. In: International Symposium on Pervasive Systems, Algorithms, and NetworksGoogle Scholar
  5. 5.
    Song, Y.-S.: Storing Big Data- The rise of the Storage Cloud (2012)Google Scholar
  6. 6.
    Philip, R.: Managing Big Data. TDWI research (2013)Google Scholar
  7. 7.
    Hortonworks: What is Apache Spark. In: Hortonworks (2019). https://hortonworks.com/apache/spark/. Accessed 24 Apr 2019
  8. 8.
    Shay, C.: Application Denial of Service. Hack tics Ltd (2007)Google Scholar
  9. 9.
    Daniel, J.: Understanding brute force. National Science Foundation, Chicago (2019)Google Scholar
  10. 10.
    Bifet, A., De Francisci, M.: Big data stream learning with SAMOA. In: IEEE International Conference on Data Mining Workshops, ICDMW 2015, pp. 1199–1202 (2015).  https://doi.org/10.1109/ICDMW.2014.24
  11. 11.
    Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bengio, Y.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127 (2009)Google Scholar
  13. 13.
    Bengio, Y., LeCun, Y.: Scaling learning algorithms towards AI. Large-Scale Kernel Mach. 34(5), 1–41 (2007)Google Scholar
  14. 14.
    Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRefGoogle Scholar
  15. 15.
    Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning-a new frontier in artificial intelligence research [research frontier]. IEEE Comput. Intell. Mag. 5(4), 13–18 (2010)CrossRefGoogle Scholar
  16. 16.
    Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. Adv. Neural. Inf. Process. Syst. 19, 153 (2007)Google Scholar
  17. 17.
    Hordri, N.F., Yuhaniz, S.S., Shamsuddin, S.M.: Deep Learning and Its Applications: A Review (2016)Google Scholar
  18. 18.
    Jan, B., Farman, H., Khan, M., Imran, M., Islam, I., Ahmad, A., Ali, S., Jeon, G.: Deep learning in big data analytics: a comparative study. Comput. Electr. Eng. (2017).  https://doi.org/10.1016/j.compeleceng.2017.12.009CrossRefGoogle Scholar
  19. 19.
    Demchenko, Y., Grosso, P., de Laat, C., Membrey, P.: Addressing big data issues in scientific data infrastructure. In: 2013 International Conference on Collaboration Technologies and Systems (CTS), San Diego, CA, pp. 48–55 (2015).  https://doi.org/10.1109/cts.2013.6567203
  20. 20.
  21. 21.
    El-Gayar, O., Timsina, P.: Opportunities for business intelligence and big data analytics in evidence based medicine. In: 2014 47th Hawaii International Conference on System Sciences, Waikoloa, HI, pp. 749–757 (2014).  https://doi.org/10.1109/hicss.2014.100
  22. 22.
    Wu, J., Ota, K., Dong, M., Li, J., Wang, H.: Big data analysis-based security situational awareness for smart grid. IEEE Trans. Big Data 4(3), 408–417 (2018).  https://doi.org/10.1109/tbdata.2016.2616146
  23. 23.
    Alfred, R.: The rise of machine learning for big data analytics. In: 2016 2nd International Conference on Science in Information Technology (ICSITech), Balikpapan, p. 1 (2016).  https://doi.org/10.1109/icsitech.2016.7852593
  24. 24.
    Mazumder, S., Dhar, S.: Hadoop ecosystem as enterprise big data platform: perspectives and practices. Int. J. Inf. Technol. Manage. 17(4), 334–348 (2018). Inderscience Enterprises LtdGoogle Scholar
  25. 25.
    Vora, M.N.: Hadoop-HBase for large-scale data. In: Proceedings of 2011 International Conference on Computer Science and Network Technology, Harbin, pp. 601–605 (2011).  https://doi.org/10.1109/iccsnt.2011.6182030
  26. 26.
    Mondal, K., Dutta, P.: Big data parallelism: challenges in different computational paradigms. In: Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT), Hooghly, pp. 1–5 (2015).  https://doi.org/10.1109/c3it.2015.7060186
  27. 27.
    Kasu, P., Kim, Y., Park, S., Atchley, S., Vallée, G.R.: Design and analysis of fault tolerance mechanisms for big data transfers. In: 2016 IEEE International Conference on Cluster Computing (CLUSTER), Taipei, pp. 138–139 (2016).  https://doi.org/10.1109/cluster.2016.74
  28. 28.
    Chawda, R.K., Thakur, G.: Big data and advanced analytics tools. In: 2016 Symposium on Colossal Data Analysis and Networking (CDAN), Indore, pp. 1–8 (2016).  https://doi.org/10.1109/CDAN.2016.7570890

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Higher School of Technology, ISIC ESTM, LMMI LaboratoryENSAM Moulay-Ismail UniversityMeknesMorocco

Personalised recommendations