Assessing NoSql Approaches for Spatial Big Data Management

  • El Hassane NassifEmail author
  • Hajji Hicham
  • Reda Yaagoubi
  • Hassan Badir
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 92)


Since the advent of social networks, Iot and Smartphones, spatial data are taken by storm by the Big Data phenomenon. Their management and analysis is a real challenge for traditional geographic information systems. Indeed, these solutions don’t respond effectively to big data constraints as they still rely on relational databases to manage and process spatial data.

In this paper, we compare, from a qualitative and quantitative point of view, three families of NoSql databases with geospatial features: Key-value, column and document oriented. We explore the ways offered by these three NoSql paradigms for efficient management and analysis of massive spatial vector data and then we analyze the performance of two of them. The empirical evaluation is performed on two clusters based on an open data datasets and gives some advantages and limitations of these approaches.


Spatial Big Data Distributed spatial computing Accumulo Elasticsearch Redis Spatial Vector 


  1. 1.
    Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387 (1970)CrossRefGoogle Scholar
  2. 2.
    Bachman, C.W.: Integrated data store. DPMA Q. 1(2), 10–30 (1965)Google Scholar
  3. 3.
    Chamberlin, D.D., Boyce, R.F.: SEQUEL: a structured English query language. In: Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) Workshop on Data Description, Access and Control, pp. 249–264. ACM (1974)Google Scholar
  4. 4.
    De Mauro, A., Greco, M., Grimaldi, M.: A formal definition of Big Data based on its essential features. Libr. Rev. 65(3), 122–135 (2016)CrossRefGoogle Scholar
  5. 5.
    Amirian, P., Basiri, A., Winstanley, A.: Evaluation of data management systems for geospatial big data. In: International Conference on Computational Science and Its Applications, pp. 678–690. Springer, Cham (2014)Google Scholar
  6. 6.
    DATA, semi-structured. SQL and NoSQL database comparison. In: Proceedings of the 2018 Future of Information and Communication Conference (FICC). Advances in Information and Communication Networks, pp. 294. Springer (2018)Google Scholar
  7. 7.
    Mukherjee, S.: The battle between NoSQL databases and RDBMS. University of the Cumberlands Chicago, United States (2019)Google Scholar
  8. 8.
  9. 9.
    Moniruzzaman, A.B.M., Hossain, S.A.: NoSQL database: new era of databases for big data analytics-classification, characteristics and comparison. arXiv preprint arXiv:1307.0191 (2013)
  10. 10.
  11. 11.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., et al.: Chapter 11: Hash tables. In: Introduction to Algorithms, pp. 221–252. Mit press and McGraw-Hill (2001). ISBN 978-0-262-53196-2Google Scholar
  12. 12.
    Procopiuc, O., Agarwal, P.K., Arge, L., et al.: Bkd-Tree: a dynamic scalable kd-Tree. In: International Symposium on Spatial and Temporal Databases, pp. 46–65. Springer, Berlin (2003)Google Scholar
  13. 13.
    Mpinda, S.A.T., Maschietto, L.G., Bungama, P.A.: From relational database to columnoriented NoSQL database: migration process. Int. J. Eng. Res. Technol. (IJERT) 4, 399–403 (2015)Google Scholar
  14. 14.
    Chang, F., Dean, J., Ghemawat, S., et al.: Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst. (TOCS) 26(2), 4 (2008)CrossRefGoogle Scholar
  15. 15.
    Böxhm, C., Klump, G., Kriegel, H.-P.: XZ-Ordering: a space-filling curve for objects with spatial extension. In: International Symposium on Spatial Databases, pp. 75–90. Springer, Berlin (1999)Google Scholar
  16. 16.
    Laksono, D.: Testing spatial data deliverance in SQL and NoSQL database using NodeJS fullstack web app. In: 2018 4th International Conference on Science and Technology (ICST), pp. 1–5. IEEE (2018)Google Scholar
  17. 17.
    Baralis, E., Dalla Valle, A., Garza, P., et al.: SQL versus NoSQL databases for geospatial applications. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 3388–3397. IEEE (2017)Google Scholar
  18. 18.
    Zhang, D., Zhao, J., Zhang, F., et al.: UrbanCPS: a cyber-physical system based on multi-source big infrastructure data for heterogeneous model integration. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 238–247. ACM (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • El Hassane Nassif
    • 1
    Email author
  • Hajji Hicham
    • 1
  • Reda Yaagoubi
    • 1
  • Hassan Badir
    • 2
  1. 1.Ecole ESGIT, IAV H2RabatMorocco
  2. 2.Ecole ENSAT TangerTangierMorocco

Personalised recommendations