Advertisement

Planar Hexagonal Antenna Array for WLAN Applications

  • Taoufik BenyethoEmail author
  • Hamid Bennis
  • Jamal Zbitou
  • Larbi El Abdellaoui
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 92)

Abstract

In this work, a new antenna array developed for ISM 2.4 GHz applications is introduced. The structure is composed by associating four elementary antennas of hexagonal form using fractal geometry. The antennas are powered using the quarter-wave transformer. The designed structure has been optimized with CST Microwave Studio, it has a good input impedance matching in the validated band with a high gain of 8.4 dBi and an aperture angle around 60°. The total dimensions of the structure are 150 × 75 mm2.

Keywords

Planar Fractal DGS WLAN Hexagonal Antenna array 

Notes

Acknowledgments

The authors have to thank Mr. Mohamed Latrach, Professor in ESEO, Engineering Institute in Angers, France, for allowing them to use all the equipment and electromagnetic solvers available in his laboratory.

References

  1. 1.
    Van Name, F.W.: Modern Physics, p. 30. Prentice-Hall, New York (1962)Google Scholar
  2. 2.
    Belrose, J.S.: Fessenden and Marconi: their differing technologies and transatlantic experiments during the first decade of this century. In: International Conference on 100 Years of Radio, pp. 5–7 (1995)Google Scholar
  3. 3.
    Olver, D.: Microwave horns and feeds, USA, IET, pp. 2–4 (1994). ISBN 0-85296-809-4Google Scholar
  4. 4.
    Spradley, J.: A volumetric electrically scanned two-dimensional microwave antenna array. IRE National Convention Record, Part I - Antennas and Propagation Microwaves. The Institute of Radio Engineers, New York, pp. 204–212 (1958)Google Scholar
  5. 5.
    Howell, J.: Microstrip Antennas. In: IEEE International Symposium on Antennas and Propagation. Williamsburg Virginia, pp. 177–180 (1972)Google Scholar
  6. 6.
    Bancroft, R.: Microstrip and Printed Antenna Design. Noble Publishing, Chapter 2–3 (2004)Google Scholar
  7. 7.
    Mandelbrot, B.B.: Fractals: form, chance and dimension. Les objets fractals: forme hasard et dimension. Nouvelle bibliothèque scientifiques. French edition (1975)Google Scholar
  8. 8.
    Puente, C., Romeu, J., Cardama, R.: On the behavior of the Sierpinski multiband fractal antenna. IEEE Trans. Antenna Propag. 46(4) (1998)Google Scholar
  9. 9.
    Koch, H.V.: Une méthode géométrique élémentaire pour l’étude de certaines questions de la théorie des courbes planes. Acta Mathematica 30(1), 145–174 (1906)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dhar, S., Patra, K., Ghatak, R., Gupta, B., Poddar, D.R.: A dielectric resonator-loaded minkowski fractal-shaped slot loop heptaband antenna. IEEE Trans. Antennas Propag. 63(4), 1521–1529 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cohen, N.: Fractal Antennas. Commun. Q. 9 (1995)Google Scholar
  12. 12.
    Jindal, S., Sivia, J.S., Bindra, H.S.: Hybrid fractal antenna using meander and minkowski curves for wireless applications. Wireless Pers. Commun.  https://doi.org/10.1007/s11277-019-06622-5
  13. 13.
    Sivia, J.S., Kaur, G., Sarao, A.K.: A modified Sierpinski carpet fractal antenna for multiband application. Wireless Pers. Commun. 95(4), 4269–4279 (2017)CrossRefGoogle Scholar
  14. 14.
    Bhatia, S.S., Sivia, J.S.: On the design of fractal antenna array for multiband applications. J. Inst. Eng. India Series B (2019).  https://doi.org/10.1007/s40031-019-00409-9
  15. 15.
    Benyetho, T., Zbitou, J., El Abdellaoui, L., Bennis, H., Tribak, A.: A new dual band planar fractal antenna for UMTS and ISM bands. Act. Passive Electron. Compon. (Hindawi) 2018, 1–10 (2018)CrossRefGoogle Scholar
  16. 16.
    Lu, P., Yang, X.S., Li, J.L., Wang, B.Z.: A compact frequency reconfigurable Rectenna for 5.2 and 5.8 GHz wireless power transmission. IEEE Trans. Power Electron. 30(11), 1–5 (2015)CrossRefGoogle Scholar
  17. 17.
    Benyetho, T., El Abdellaoui, L., Tajmouati, A., Tribak, A., Latrach, M.: Design of new Microstrip multiband fractal antennas: Sierpinski triangle and hexagonal structures. In: Handbook of Research on Advanced Trends in Microwave and Communication Engineering, pp. 1–33. IGI Global (2016).  https://doi.org/10.4018/978-1-5225-0773-4.ch001
  18. 18.
    Benyetho, T., El Abdellaoui, L., Zbitou, J., Bennis, H., Tribak, A., Latrach, M.: A new dual band planar fractal antenna for UMTS and ISM bands. Int. J. Commun. Antenna Propag. (I.Re.C.A.P) 7(1), 64–71 (2017)Google Scholar
  19. 19.
    Wang, Z., Zhang, G.X., Yin, Y., Wu, J.: Design of a dual-band high-gain antenna array for WLAN and WiMAX base station. IEEE Antennas Wirel. Propag. Lett. 13, 1721–1724 (2014)CrossRefGoogle Scholar
  20. 20.
    Fung, C.: Basic Antenna Theory and Application. Worcester Polytechnic Institute (2011)Google Scholar
  21. 21.
    Sonkki, M., Pfeil, D., Hovinen, V., Dandekar, K.R.: Wideband planar four element linear antenna array. IEEE Antennas Wirel. Propag. Lett. 13, 1663–1666 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Taoufik Benyetho
    • 1
    Email author
  • Hamid Bennis
    • 2
  • Jamal Zbitou
    • 1
  • Larbi El Abdellaoui
    • 1
  1. 1.LMEET, FST of SettatHassan 1st UniversitySettatMorocco
  2. 2.TIM Research Team, EST of MeknesMoulay Ismail UniversityMeknesMorocco

Personalised recommendations