Performance and Complexity Comparisons of Polar Codes and LDPC Codes

  • Mohammed MensouriEmail author
  • Abdessadek Aaroud
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 92)


Polar codes can be considered serious competitors to LDPC codes in terms of performance and complexity. This paper provides a description of the Polar codes and the LDPC codes used by channel coding. Then, we undertake a comparison of Polar codes and LDPC codes based on several factors: BER performance, encoding complexity and decoding computational complexity. The performance of newly obtained codes is evaluated in term of bit error rate (BER) for a given value of Eb/No. It has been shown via computer simulations. They are employed as the error correction scheme over Additive White Gaussian Channels (AWGN) by employing Binary phase shift keying (BPSK) modulation scheme.


Channel coding Polar codes LDPC codes Coding Decoding Successive cancellation algorithm BP algorithm 


  1. 1.
    Arikan, E.: Channel polarization: a method for constructing capacity-achieving codes. In: IEEE International Symposium on Information Theory, ISIT 2008, pp. 1173–1177 (2008)Google Scholar
  2. 2.
    Guha, S., Wilde, M.: Polar coding to achieve the Holevo capacity of a pure-loss optical channel. In: 2012 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 546–550 (2012)Google Scholar
  3. 3.
    Wu, Z., Lankl, B.: Polar codes for low-complexity forward error correction in optical access networks. In: ITG Symposium; Proceedings of Photonic Networks, vol. 15, pp. 1–8 (2014)Google Scholar
  4. 4.
    Sasoglu, E., Telatar, E., Yeh, E.: Polar codes for the two-user binary-input multiple-access channel. In: 2010 IEEE Information Theory Workshop (ITW), pp. 1–5 (2010)Google Scholar
  5. 5.
    Zhang, C., Yuan, B., Parhi, K.: Low-latency SC decoder architectures for polar codes arXiv:1111.0705 (2011)
  6. 6.
    Lasco-serrano, R., Thobaben, R., Andersson, M., Rathi, V., Skoglund, M.: Polar codes for cooperative relaying. IEEE Trans. Commun. 60, 3263–3273 (2012)CrossRefGoogle Scholar
  7. 7.
    Hirche, C.: Polar codes in quantum information theory (2015)Google Scholar
  8. 8.
    Andersson, M., Rathi, V., Thobaben, R., Kliewer, J., Skoglund, M.: Nested polar codes for wiretap and relay channels. Commun. Lett. 14, 752–754 (2010)CrossRefGoogle Scholar
  9. 9.
    Gallager, R.G.: Low Density Parity Check Code. MIT Press, Combridge (1963)zbMATHGoogle Scholar
  10. 10.
    IEEE-802.11n: Wireless LAN Medium Access Control and Physical Layer Specifications: Enhancements for Higher Throughput, P802.11n-2009, October 2009Google Scholar
  11. 11.
    IEEE-802.16e: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, P802.16e-2005, October 2005Google Scholar
  12. 12.
    IEEE-802.15.3c: Amendment 2: Millimeter-wave-based Alternative Physical Layer Extension, 802.15.3c-2009 (2009)Google Scholar
  13. 13.
    ETSI DVB-S2: Digital video broadcasting, second generation, ETSIEN 302307, vol. 1.1.1 (2005)Google Scholar
  14. 14.
    Tanner, R.M.: A recursive approach to low complexity codes. IEEE Trans. Inform. Theory 27(5), 533–547 (1981)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mackay, D., Wilson, S.T., Davey, M.C.: Compression of constructions irregular codes. IEEE Trans. Commun. 47(10), 1449–1454 (1999)CrossRefGoogle Scholar
  16. 16.
    Spielman, D.: Linear-time encodable and decodable error-correcting code. IEEE Trans. Inf. Theory 42(6), 1723–1731 (1969)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Luby, M., Mitzenmacher, M., Shokrollahi, A., Spielman, D., Stemann, V.: Partical loss Resilient codes. In: Proceedings 30th Annual ACM Symposium Theory of Computing, pp. 150–159 (1997)Google Scholar
  18. 18.
    Richardson, T.J., Urbanke, R.L.: Efficient encoding of low-density Parity check Code. IEEE Trans. Inf. Theory 47, 638–656 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Debaynast, A., Declercq, D.: Gallager codes for mulliple access. In: Proceedings of the ISIT 02 Symposium, Lausanne, Suitzerland, July 2002Google Scholar
  20. 20.
    Amador, E.: Aspects des Décodeurs LDPC Optimisés pour la Basse Consommation. Thèse, Université TELECOM ParisTech, Soutenue le, 31 Mars 2011Google Scholar
  21. 21.
    Matteo GORGOGLIONE: Analyse et construction de codes LDPC non-binaires pour des canaux à évanouissement”, thése, Université de Cergy Pontoise, Soutenue le, 25 October 2012Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Sciences, Department of Computer ScienceEl JadidaMorocco

Personalised recommendations