Advertisement

Metalogic, Schopenhauer and Universal Logic

  • Jean-Yves BeziauEmail author
Chapter
  • 34 Downloads
Part of the Studies in Universal Logic book series (SUL)

Abstract

Schopenhauer used the word “metalogical” since his first work, On the Fourfold Root of the Principle of Sufficient Reason (1813), being the first to give it a precise meaning and a proper place within a philosophical system. One century later the word “Metalogic” started to be used and promoted in modern logic by the Russian logician Nicolai Vasiliev and the Polish School (Łukasiewicz, Tarski, Wajsberg). The aim of this paper is to examine the relations between the different uses of this word and doing that to try to have a better understanding of what Metalogic is and also logic tout court.

In a first section we examine and clarify the meaning of Metalogic in modern logic, comparing Metalogic to Metamathematics and Universal Logic. We make in particular a distinction between two trends in Metalogic that can be crystallized through metatheorem vs. meta-axiom.

In a second section we present Schopenhauer’s use of the word, which is essentially through the notion of metalogical truths. We describe their locations within Schopenhauer’s framework, standing side by side with other kinds of truths (metaphysical truths, logical truths, empirical truths), constituting altogether the Principle of Sufficient Reason (PSR) of Knowledge, one of the four roots of the PSR. We explain why Schopenhauer thinks that mathematical truths do not need to have a logical ground and present his view according to which metalogical truths are fundamental laws of thought that cannot be changed. We discuss the feminine nature he attributes to them and establish a parallel with Aristotle’s vision of logic.

In a third section we examine how modern logic arose from a double challenge of the fundamental laws of logic: their reformulation and relocation, their relativization and rejection. We emphasize that this dynamic evolution was performed on the basis of some semiotical and conceptual changes at the heart of logic and Metalogic.

Keywords

Metalogic Schopenhauer Universal Logic Metamathematics Laws of Thought Łukasiewicz Tarski Vasiliev Aristotle 

Mathematics Subject Classification (2000)

Primary 03A05; Secondary 03-03 01A55 01A50 00A30 

References

  1. 1.
    Ancien Moniteur, Réimpression Mai 1789 - Novembre 1799, Tome 18ème, Plon, Paris, 1847.Google Scholar
  2. 2.
    V.A.Bazhanov, The Fate of One Forgotten Idea: N.A. Vasiliev and His Imaginary Logic, Studies in Soviet Thought, 39 (1990), pp.333–344.CrossRefGoogle Scholar
  3. 3.
    V.A.Bazhanov, Non-Classical Stems from Classical: N. A. Vasiliev’s Approach to Logic and his Reassessment of the Square of Opposition, Logica Universalis, 2 (2018), pp.71–76.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    P.Bernhard, Visualizations of the Square of Opposition, Logica Universalis, 2 (2008), pp.31–41.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    P.Bernays, Beiträge zur axiomatischen Behandlung des Logik-Kalküls. Habilitationsschrift, Universität Göttingen. Unpublished Typescript,1918.Google Scholar
  6. 6.
    P.Bernays, Axiomatische Untersuchungen des Aussagen-Kalküls der ‘Principia Mathematica’, Mathematische Zeitschrift, 25 (1926) pp.305–320. Abridged version of [ 5]. Translated into English by R.Zach and presented by W.A.Carnielli in [ 29], pp.33–56.
  7. 7.
    J.-Y.Beziau, O princípio de razão suficiente e a lógica segundo Arthur Schopenhauer, in Século XIX: O Nascimento da Ciência Contemporânea, F.R.R.Évora (ed), Cle-Unicamp, Campinas, 1992, pp.35–39.Google Scholar
  8. 8.
    J.-Y.Beziau, La critique Schopenhauerienne de l’usage de la logique en mathématiques, O Que Nos Faz Pensar, 7 (1993), pp.81–88.Google Scholar
  9. 9.
    J.-Y.Beziau, On the formalization of the principium rationis sufficientis, Bulletin of the Section of Logic, 22 (1993), pp.2–3.Google Scholar
  10. 10.
    J.-Y.Beziau, Théorie législative de la négation pure, Logique et Analyse, 147–148 (1994), pp.209–225.MathSciNetzbMATHGoogle Scholar
  11. 11.
    J.-Y.Beziau, O suicídio segundo Arthur Schopenhauer, Discurso, 28 (1997), pp.127–143.CrossRefGoogle Scholar
  12. 12.
    J.-Y.Beziau, Rules, derived rules, permissible rules and the various types of systems of deduction, in E.H.Hauesler and L.C.Pereira (eds), Proof, types and categories, PUC, Rio de Janeiro, 1999, pp.159–184.Google Scholar
  13. 13.
    J.-Y.Beziau, Sequents and bivaluations, Logique et Analyse, 44 (2001), pp.373–394.MathSciNetzbMATHGoogle Scholar
  14. 14.
    J.-Y.Beziau, New Light on the Square of Oppositions and its Nameless Corner, Logical Investigations, 10, (2003), pp.218–232.MathSciNetzbMATHGoogle Scholar
  15. 15.
    J.-Y.Beziau, Les axiomes de Tarski, in R.Pouivet and M.Rebuschi (eds), La philosophie en Pologne 1918–1939, Vrin, Paris, 2006, pp.135–149.Google Scholar
  16. 16.
    J.-Y.Beziau, What is “Formal logic” ?, in Myung-Hyun-Lee (ed), Proceedings of the XXII World Congress of Philosophy, vol.13, Korean Philosophical Association, Seoul, 2008, pp.9–22.Google Scholar
  17. 17.
    J.-Y.Beziau, Logic is Not Logic, Abstracta 6 (2010), pp.73–102.Google Scholar
  18. 18.
    J.-Y.Beziau, What is a Logic? – Towards axiomatic emptiness, Logical Investigations, 16 (2010), pp.272–279.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    J.-Y.Beziau, Rougier: Logique et Métaphyisque, in P.Zordan (ed), Proceedings of the 4th World Conference on Metaphysics, Dykinson, 2011, pp.464–472.Google Scholar
  20. 20.
    J.-Y.Beziau, History of Truth-Values, in D.M.Gabbay, F.J.Pelletier and J.Woods (eds), Handbook of the History of Logic, Vol. 11 – Logic: A History of its Central Concepts, Elsevier, Amsterdam, 2012, pp.233–305.Google Scholar
  21. 21.
    J.-Y.Beziau, The New Rising of the Square of Opposition, in J.-Y.Beziau and D.Jacquette (eds), Around and Beyond the Square of Opposition, Birkhäuser, Basel, 2012, pp.6–24.Google Scholar
  22. 22.
    J.-Y.Beziau, Is Modern Logic Non-Aristotelian?, in V.Markin and D.Zaitsev (eds), The Logical Legacy of Nikolai Vasiliev and Modern Logic, Springer International Publishing, Cham, 2017, pp.19–41Google Scholar
  23. 23.
    J.-Y.Beziau, Opposition and Order, in J.-Y.Beziau and S.Gerogiorgakis (eds), New Dimensions of the Square of Opposition, Philosophia Verlag, Munich, 2017, pp.321–335.Google Scholar
  24. 24.
    J.-Y.Beziau, There is no Cube of Opposition, in J.-Y.Beziau and G.Basti (eds), The Square of Opposition: A Cornerstone of Thought, Birkhäuser, Basel, 2017, pp.179–193Google Scholar
  25. 25.
    J.-Y.Beziau, The Lvov-Warsaw School: A True Mythology, in [ 50], Birkhäuser, Basel, 2018, pp.779–815.
  26. 26.
    J.-Y.Beziau, Universal Logic: Evolution of a Project. Logica Universalis, 12 (2018), pp.1–8.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    J.-Y.Beziau, Is the Principle of Contradiction a Consequence ofx 2 = x?, Logica Universalis, 12 (2018), pp.55–81.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    J.-Y.Beziau, Cats that are not Cats - Towards a Natural Philosophy of Paraconsistency, in D.Gabbay, L.Magnani, W.Park and A.-V.Pietarinen (eds), Natural Arguments - A Tribute to John Woods, College Publication, London, 2019, pp.49–71.Google Scholar
  29. 29.
    J.-Y.Beziau (ed), Universal Logic: An Anthology, Birkhäuser, Basel, 2012.zbMATHGoogle Scholar
  30. 30.
    G.Boole, An Investigation of the Laws of Thought on which are Founded the Mathematical Theories of Logic and Probabilities, MacMillan, London, 1854.zbMATHGoogle Scholar
  31. 31.
    N.Bourbaki, Éléments de mathématique, 11 volumes, Hermann and Others Publishers, Paris, 1939–2016. The English translation has been published by various publishers. It is currently published by Springer.Google Scholar
  32. 32.
    J.Brumberg-Chaumont, Universal Logic and Aristotelian Logic: Formality and Essence of Logic, Logcia Universalis, 9 (2015), pp.253–278.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    J.Brumberg-Chaumont, La forme syllogistique et le problème des syllogismes sophistiques selon Robert Kilwardby, in L.Cesallli, F.Goubier and A. de Librea (eds), Formal Approaches and Natural Language in Medieval Logic - Proceedings of the XIXth European Symposium of Medieval Logic and Semantics, Geneva, 12–16 June 2012, Fédération Internationale des Instituts d’Études Médiévales, Rome, 2016, pp.188–213.Google Scholar
  34. 34.
    J.Brumberg-Chaumont, Form and Matter of the Syllogism in Anonymus Cantabrigiensis, in B.Bydén and C.Thomsen Thörnqvist (eds), Aristotelian Tradition Aristotle’s Works on Logic and Metaphysics and Their Reception in the Middle Ages, Pontifical Institute of Mediaeval Studies, Toronto, 2017, pp.188–213.Google Scholar
  35. 35.
    R.Chuaqui and P.Suppes, Free-variable Axiomatic Foundations of Infinitesimal Analysis: A Fragment with Finitary Consistency Proof, Journal of Symbolic Logic, 60 (1995), 122–159.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    R.T.Cook, A Dictionary of Philosophical Logic, Edinburgh University Press, Edinburgh, 2009.Google Scholar
  37. 37.
    M.Correia, The Proto-exposition of Aristotelian Categorical Logic, in J.-Y.Beziau and G.Basti (eds), The Square of Opposition: A Cornerstone of Thought, Birkhäuser, Basel, 2017, pp.21–34.Google Scholar
  38. 38.
    N.C.A. da Costa, J.-Y.Beziau and O.A.S.Bueno, Paraconsistent logic in a historical perspective, Logique et Analyse, 150–152 (1995), pp.111–125.MathSciNetzbMATHGoogle Scholar
  39. 39.
    N.C.A. da Costa and F.A. Doria, Undecidability and incompleteness in classical mechanics, International Journal of Theoretical Physics, 30 (1991), pp.1041–1073.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    H.B.Curry, Grundlagen der kombinatorischen Logik, 1929. Translated into English and presented by F.Kamareddine and J.Seldin: Foundations of Combinatory Logics, College Publications, London, 2017.Google Scholar
  41. 41.
    H.B.Curry, The Inconsistency of Certain Formal Logics, Journal of Symbolic Logic, 7 (1942), pp.115–117.MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    H.B.Curry, Leçons de logique algébrique, E.Nauwelaerts, Louvain and Gauthiers-Villars, Paris, 1952.Google Scholar
  43. 43.
    H.B.Curry, Foundations of Mathematical Logic, McGraw-Hill, New York, 1963, reprinted by Dover, New York, 1977.Google Scholar
  44. 44.
    M.-J.Durand-Richard, George Peacock (1791–1858): La synthèse algébrique comme loi symbolique dans l’Angleterre des réformes, PhD thesis, EHEES, Paris, 1985.Google Scholar
  45. 45.
    M.-J.Durand-Richard, Opération, fonction et signification de Boole à Frege, Cahiers Critiques de Philosophie, 3 (2007), pp.99–128.Google Scholar
  46. 46.
    Encyclopaedia Britannica, Laws of thought, https://www.britannica.com/topic/laws-of-thought
  47. 47.
    P.B. Eggenberger, The Philosophical Background of L.E.J. Brouwer’s Intuitionistic Mathematics, University of California, Berkeley, Ph.D. Thesis, 1976.Google Scholar
  48. 48.
    W.B.Ewald (ed), From Kant to Hilbert. A Source Book in the Foundations of Mathematics, 2 volumes, Oxford University Press, Oxford, 1996.Google Scholar
  49. 49.
    P.Février, Les relations d’incertitude d’Heisenberg et la logique, Travaux du IXe Congrès International de Philosophie, volume 6, Logique et Mathématiques, Paris, 1937, pp.88–94.Google Scholar
  50. 50.
    A.Garrido and U.Wybraniec-Skardowska (eds), The Lvov-Warsaw School, Past and Present, Birkäuser, Basel 2018.zbMATHGoogle Scholar
  51. 51.
    G.Gentzen, Über die Existenz unabhängiger Axiomensysteme zu unendlichen Satzsystemen, Mathematische Annalen, 107, 1932, pp.329–350.zbMATHCrossRefGoogle Scholar
  52. 52.
    G.Gentzen, Untersuchungen über das logische Schließen. I -II, Mathematische Zeitschrift, 39 (1935), pp.176–210 and pp.405–431.Google Scholar
  53. 53.
    G.Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathematische Annalen, 112 (1936) pp.493–565.MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    K.Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I., Monatshefte für Mathematik und Physik 38 (1931), pp.173–198.MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    E.L.Gomes and I.M.L.D’Ottaviano, Aristotle’s theory of deduction and paraconsistency, Principia 14 (2010), pp.71–97.Google Scholar
  56. 56.
    S.Haack, Philosophy of Logics, in Cambridge University Press, Cambridge, 1978.Google Scholar
  57. 57.
    M.Heidegger, Der Satz vom Grund, Günther Neske, Pfullingen,1957.Google Scholar
  58. 58.
    A.-S.Heinemann, Schopenhauer and the Equational Form of Predication, this volume.Google Scholar
  59. 59.
    P.Hertz, Über Axiomensysteme für beliebige Satzsysteme. I, Mathematische Annalen, 87 (1922), pp.246–269. English translation and presentation by J.Legirs in [ 29], pp.3–29.
  60. 60.
    P.Hertz, Von Wesen des Logischen, insbesondere der Bedeutung des modus Barbara, Erkenntnis, 2 (1921), pp.369–392.zbMATHCrossRefGoogle Scholar
  61. 61.
    D.Hilbert, Neubegründung der Mathematik: Erste Mitteilung, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität 1 (1922), pp.155–177. Translated into English as The new Grounding of mathematics in [ 48], Vol.2, pp.1115–1133.
  62. 62.
    D.Hilbert, Die logischen Grundlagen der Mathematik, Mathematische Annalen, 88 (1923), pp.151–165. Translated into English as The Logical Foundations of Mathematics in [ 48], Vol.2, pp.1134–1148.
  63. 63.
    D.Hilbert and W.Ackermann, Grundzüge der theoretischen Logik, Springer, Berlin, 1929.zbMATHGoogle Scholar
  64. 64.
    D.Hilbert and P.Bernays, Grundlagen der Mathematik, Two Volumes, Springer, Berlin, 1934 and 1939.Google Scholar
  65. 65.
    S.Jáskowski, Rachunek zdan dla systemów dedukcyjnych sprzecznych, Studia Societatis Scientiarum Torunensis, Sectio A, I(5), 55–77.Google Scholar
  66. 66.
    D.Jaspers, Logic and Colour, Logica Universalis, 6 (2011), pp.227–248.MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    I.Kant, Kritik der reinen Vernunft, 1st edition, 1781, 2nd edition, 1787.Google Scholar
  68. 68.
    S.C.Kleene, Introduction to metamathematics, North Holland, Amsterdam, 1952.zbMATHGoogle Scholar
  69. 69.
    S.C.Kleene, Mathematical logic, John Wiley and Sons, New York, 1967.zbMATHGoogle Scholar
  70. 70.
    S.C.Kleene, Introduction to metamathematics. Reprinted edition of [ 68] by Ishi Press International, New York, 2009.
  71. 71.
    S.C.Kleene, The writing of Introduction to metamathematics, in T.Drucker (ed), Perspectives on the History of Mathematical Logic, Birkhäuser, Basel, 1991, pp.161–168.Google Scholar
  72. 72.
    T.Koetsier, Arthur Schopenhauer and L.E.J. Brouwer: A Comparison, in T.Koetsier and L.Bergmans (eds), Mathematics and the Divine – A Historical Study, Elsevier, Amsterdam, 2005, pp.569–594.Google Scholar
  73. 73.
    J.Lemanski and A.Moktefi, Making Sense of Schopenhauer’s Diagram of Good and Evil, in P. Chapman et al. (eds.): Diagrams 2018, LNAI 10871, Springer International Publishing, Cham, 2018, pp.721–724.Google Scholar
  74. 74.
    J.Łukasiewicz, O zasadzie sprzeczności u Arystotelesa, Studium krytyczne, Akademia Umiejetnosci, Kraków, 1910.Google Scholar
  75. 75.
    J.Łukasiewicz, O logice trójwartosciowej, Ruch Filozoficzny, 5 (1920), pp.170–171. English Translation in [ 78].
  76. 76.
    J.Łukasiewicz, O logice stoikow, Przegla̧d Filozoficzny, 30 (1927), pp.278–279.Google Scholar
  77. 77.
    J.Łukasiewicz and A.Tarski, Untersuchungen über den Aussagenkalkül, Comptes Rendus des Séances de la Société des Sciences et des Lettres des Varsovie Classe III, 23 (1930), pp.30–50.zbMATHGoogle Scholar
  78. 78.
    S.MacCall (eds), Polish Logic 1920–1939, Oxford University Press, New York, 1967.Google Scholar
  79. 79.
    S.MacLane, Mathematics, form and function, Springer, New York, 1986.zbMATHCrossRefGoogle Scholar
  80. 80.
    B.Magee, The Philosophy of Schopenhauer, Oxford University Press, Oxford, 1983.Google Scholar
  81. 81.
    O.Makridis, The Sheffer Stroke, Internet Encyclopedia of Philosophy, https://www.iep.utm.edu/sheffers/
  82. 82.
    R.Monk, Ludwig Wittgenstein: The Duty of Genius, Vintage, London, 1991.Google Scholar
  83. 83.
    R.Nelsen, Proofs without words - Exercises in visual thinking I-II-III, Mathematical American Association, Washington, 1993–2016.Google Scholar
  84. 84.
    F.Nietzsche, Schopenhauer als Erzieher, 1874.Google Scholar
  85. 85.
    B.Paz, The principle of reason according to Leibniz: the origins, main assumptions and forms, Roczniki Filozoficzne, 65 (2017), pp.111–143.CrossRefGoogle Scholar
  86. 86.
    M.Pedroso, O Conhecimento enquanto Afirmação da Vontade de Vida: Um estudo acerca da dialética erística de Arthur Schopenhauer, Master Thesis, University of Brasilia, 2016.Google Scholar
  87. 87.
    C.S.Peirce, A Boolian Algebra with One Constant.Google Scholar
  88. 88.
    E.Post, Introduction to a General Theory of Elementary Propositions, American Journal of Mathematics, 43 (1921), pp.163–185.MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    H.Rasiowa and R.Sikorski, The mathematics of metamathematics, PWN-Polish Scientific Publishers, Warsaw, 1963.zbMATHGoogle Scholar
  90. 90.
    W.Rautenberg, Einführung in die Mathematische Logik, Vieweg, Braunschweig, 1996.zbMATHGoogle Scholar
  91. 91.
    A.Robinson, Introduction to model theory and to the metamathematics of algebra, North-Holland, Amsterdam, 1963.zbMATHGoogle Scholar
  92. 92.
    C.Rosset, Schopenhauer, philosophe de l’absurde, Presses Universitaires de France, Paris, 1967.Google Scholar
  93. 93.
    C.Rosset, L’Esthétique de Schopenhauer, Presses Universitaires de France, Paris, 1969.Google Scholar
  94. 94.
    L.Rougier, Les Paralogismes du rationalisme, Alcan, Paris, 1920.zbMATHGoogle Scholar
  95. 95.
    L.Rougier, The Relativity of Logic, Philosophy and Phenomenological Research, 2 (1941), pp.137–158. Reprinted in [ 29] with presentation and comments by M.Marion, pp.93–122.
  96. 96.
    L.Rougier, Traité de la connaissance, Gauthiers-Villars, Paris, 1955.zbMATHGoogle Scholar
  97. 97.
    M.Ruffing, Die 1, 2, 3 / 4-Konstellation bei Schopenhauer, in Reinhard Brandt (ed), Die Macht des Vierten. Über eine Ordnung der europäischen Kultur, Hamburg, 2014, pp.329–334.Google Scholar
  98. 98.
    H.Scholz, Abriss der Geschichte der Logik, Karl Albert, Freiburg and Munich, 1931.Google Scholar
  99. 99.
    A.Schopenhauer, Über die vierfache Wurzel des Satzes vom zureichenden Grunde, 1813, 1847.Google Scholar
  100. 100.
    A.Schopenhauer, Die Welt als Wille und Vorstellung, 1818, 1844, 1859.Google Scholar
  101. 101.
    A.Schopenhauer, Parerga and Paraliponema, 1851.Google Scholar
  102. 102.
    A.Schopenhauer, Handschriftliche Nachlass, (= SW, Vol. IX), Piper, Munich, 1913.Google Scholar
  103. 103.
    H.M.Schüler and J.Lemanski, Arthur Schopenhauer on Naturalness in Logic, this volume.Google Scholar
  104. 104.
    M.Serfati, La revolution symbolique. La constitution de l’écriture symbolique mathématique, Petra, Paris, 2005.Google Scholar
  105. 105.
    T.Skolem, Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen, Fundamenta Mathematicae, 23 (1934), pp.150–161.zbMATHCrossRefGoogle Scholar
  106. 106.
    R.Silvestre, Philosophical logic = Philosophy + Logic?, in J.-Y.Beziau, J.-P-Desclés, A.Moktefi and A.Pascu (eds), Logic in Question - Paris Spring Workshop 2011–2019, Birkhäuser, Basel, 2019.Google Scholar
  107. 107.
    A.Tarski, Remarques sur les notions fondamentales de la méthodologie des mathématiques, Annales de la Société Polonaise de Mathématique, 7 (1928), pp.270–272. English translation and presentation by J.Zygmunt and R.Purdy in [ 29], pp.59–68.
  108. 108.
    A.Tarski, Über einige fundamentale Begriffe der Metamathematik, Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie XXIII, Classe III (1930), pp.22–29. Translated into English as On some fundamental concepts of metamathematics, in [ 115], pp.30–37.
  109. 109.
    A.Tarski, Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften. I, Monatshefte für Mathematik und Physik, 37 (1930), pp.361–404. Translated into English as Fundamental Concepts of the Methodology of the Deductive Sciences, in [ 115], pp.59–109.
  110. 110.
    A.Tarski, O pojȩciu wynikania logicznego, Przegla̧d Filozoficzny, 39 (1936), pp.58–68. English translation: On the concept of following logically by M.Stroinska and D.Hitchcock, History and Philosophy of Logic 23 (2003), pp.155–196.Google Scholar
  111. 111.
    A.Tarski, Sur la méthode déductive, in Travaux du IXe Congrès International de Philosophie, VI, Hermann, Paris, 1937, pp.95–103.Google Scholar
  112. 112.
    A.Tarski, 0 logice matematycznej i metodzie dedukcyjnej, Atlas, Lvóv and Warsaw (4th English edition by Jan Tarski: Introduction to Logic and to the Methodology of the Deductive Sciences, Oxford University Press, Oxford, 1994).Google Scholar
  113. 113.
    A.Tarski, Review of A. Mostowski’s O niezależnosci definicji skończoności w systemie logiki (On the Independence of Definitions of Finiteness in a System of Logic), Journal of Symbolic Logic, 3 (1938), pp.115–116.CrossRefGoogle Scholar
  114. 114.
    A.Tarski, Contributions to the theory of models. I, II, III, Indigationes Mathematicae, 16 (1954), pp.572–588, 17 (1955), pp.56–64.Google Scholar
  115. 115.
    A.Tarski, Logic, Semantics, Metamathematics - Papers from 1923 to 1938, 1st edition, Clarendon, Oxford, 1956. 2nd edition, Hackett, Indianapolis, 1983.Google Scholar
  116. 116.
    A. Tarski, Pisma logiczno filozoficzne, Volume 2: Metalogika, Translated into Polish and edited by Jan Zygmunt, WN PWN, Warsaw, 2000.Google Scholar
  117. 117.
    M.Troxell, Arthur Schopenhauer (1788–1860), Internet Encyclopedia of Philosophy, https://www.iep.utm.edu/schopenh/
  118. 118.
    N.A.Vasiliev, On Partial Judgments, Triangle of Opposition, Law of Excluded Forth, Kazan, 1910.Google Scholar
  119. 119.
    N.A.Vasiliev, Imaginary (non-Aristotelian) Logic, Journal of the Ministry of Education, 40 (1912), pp.207–246. English translation in Logique et Analyse, 182 (2003), pp.127–163.Google Scholar
  120. 120.
    N.A.Vasiliev, Logic and Metalogic, Logos 1/2 (1913), pp.53–81, English translation in Axiomathes, 3 (1993), pp.329–351.Google Scholar
  121. 121.
    J.Venn, Symbolic Logic, Macmillan, London, 1881.zbMATHCrossRefGoogle Scholar
  122. 122.
    M.Wajsberg, Logical works (translated and edited by S.J.Surma), Ossolineun, Wrocław, 1977.Google Scholar
  123. 123.
    M.Wajsberg, Beitrag zur Metamathematik, Mathematische Annalen, 109 (1933–34), pp.200–229. English Translation in [ 122].
  124. 124.
    M.Wajsberg, Beiträge zum Metaaussagenkalkül. I, Monatshefte für Mathematik und Physik, 42(1935), pp.221–242. English Translation in [ 122].
  125. 125.
    M.Wajsberg, Metalogische Beiträge. I, Wiadomości matematyczne, vol. 43 (1937), pp.131–168. English Translation in [ 122] and [ 78].
  126. 126.
    M.Wajsberg, Metalogische Beiträge. II, Wiadomosci matematyczne, vol. 47 (1939), pp.119–139. English Translation in [ 122] and [ 78].
  127. 127.
    M.Wille, ‘Metamathematics’ in Transition, History and Philosophy of Logic, 32 (2011), pp.333–358.MathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    A.N.Whitehead, A Treatise on Universal Logic with Applications, Cambridge University Press, Cambridge, 1898.Google Scholar
  129. 129.
    A.N.Whitehead and B.Russell, Principia Mathematica, Cambridge University Press, Cambridge, 1910–1913.zbMATHGoogle Scholar
  130. 130.
    L.Wittgenstein, Logisch-Philosophische Abhandlung, Annalen der Naturphilosophie, 14 (1921), pp.185–262.Google Scholar
  131. 131.
    J.Woleński, Logic and Philosophy in the Lvov-Warsaw School, Kluwer Dordrecht, 1989.Google Scholar
  132. 132.
    J.H.Woodger, The Axiomatic Method in Biology, Cambridge University Press, Cambridge, 1937.zbMATHGoogle Scholar
  133. 133.
    R.Zach, Hilbert’s Program Then and Now, in D.Jacqutte. D.M.Gabbay, P.Thagard and J.Woods (eds), Handbook of the Philosophy of Science, Volume 5, Philosophy of Logic, Elsevier, Amsterdam, 2007.Google Scholar
  134. 134.
    J.Zygmunt, Introduction to [ 116].

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.UFRJ - University of BrazilRio de JaneiroBrazil
  2. 2.CNPq - Brazilian Research CouncilBrasiliaBrazil
  3. 3.ABF - Brazilian Academy of PhilosophyRio de JaneiroBrazil

Personalised recommendations