Advertisement

Measurements During Optical Clearing

  • Luís Manuel Couto Oliveira
  • Valery Victorovich Tuchin
Chapter
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

There are several types of measurements that can be performed with biological tissues during optical clearing treatments. When analyzing these methods, two major modes of study must be provided: ex vivo and in vivo. Measurements made from ex vivo samples are more flexible, allowing, for instance, to measure tissue transmittance or sample thickness kinetics. The results obtained from these measurements do not mimic exactly the in vivo situation. In the case of in vivo tissues, results from measurements are more realistic, but a more restrict number is possible, based only on reflectance or imaging methods. In this chapter, we make a brief description and analysis of the various measurement procedures that can be made during treatments of tissues ex vivo and in vivo and present some studies where important information was collected. The valuable results already obtained or possible to obtain in future from measurements described here will be presented and explained in the following sections. A particular case with great interest not only for biophotonics but also for food industry or organ preservation is the estimation of the diffusion properties of water and agents. Such evaluation of parameters is based only on collimated transmittance and thickness measurements made from ex vivo tissues. We will describe these measurements here and exploit their use in the study of diffusion in Chap.  7.

Keywords

Collimated transmittance Refractive index Diffuse reflectance Total reflectance Total transmittance Specular reflectance 

References

  1. 1.
    B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, Phase measurement of light absorption and scatterer in human tissue. Rev. Sci. Instrum. 69(10), 3457–3481 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    A.V. Priezzhev, V.V. Tuchin, L.P. Shubochkin, Laser Diagnostics in Biology and Medicine (Nauka, Moscow, 1989)Google Scholar
  3. 3.
    V.V. Tuchin, Lasers and Fiber Optics in Biomedical Science, 2nd edn. (Saratov University Press, Saratov, 2010)Google Scholar
  4. 4.
    V.V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, Bellingham, 2006)Google Scholar
  5. 5.
    V.V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 3rd edn. (SPIE Press, Bellingham, 2015)CrossRefGoogle Scholar
  6. 6.
    L. Oliveira, M.I. Carvalho, E.M. Nogueira, V.V. Tuchin, Optical clearing mechanisms characterization in muscle. J. Innov. Opt. Health Sci. 9(5), 1650035 (2016)CrossRefGoogle Scholar
  7. 7.
    I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, et al., IEEE J. Sel. Top. Quant. Electron. 25(1), 7200608 (2019)CrossRefGoogle Scholar
  8. 8.
    I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, A robust ex vivo method to evaluate the diffusion properties of agents in biological tissues. J. Biophotonics 12(4), e201800333 (2019)CrossRefGoogle Scholar
  9. 9.
    S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, V.V. Tuchin, Glucose diffusion in colorectal mucosa – a comparative study between normal and cancer tissues. J. Biomed. Opt. 22(9), 091506 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    A.N. Bashkatov, K.V. Berezin, K.N. Dvoretskiy, M.L. Chernavina, E.A. Genina, V.D. Genin, V.I. Kochubey, E.N. Lazareva, A.B. Pravdin, M.E. Shvachkina, P.A. Timoshina, D.K. Tuchina, D.D. Yakovlev, D.A. Yakovlev, I.Y. Yanina, O.S. Zhernovaya, V.V. Tuchin, Measurements of tissue optical properties in the context of tissue optical clearing. J. Biomed. Opt. 23(9), 091416 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    L. Oliveira, M.I. Carvalho, E. Nogueira, V.V. Tuchin, Skeletal muscle dispersion (400–1000 nm) and kinetics at optical clearing. J. Biophotonics 11(1), e201700094 (2018)CrossRefGoogle Scholar
  12. 12.
    I. Carneiro, S. Carvalho, V. Silva, R. Henrique, L. Oliveira, V.V. Tuchin, Kinetics of optical properties of human colorectal tissues during optical clearing: a comparative study between normal and pathological tissues. J. Biomed. Opt. 23(12), 121620 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, V.V. Tuchin, Comparative study of the optical properties of colon mucosa and colon precancerous polyps between 400 and 1000 nm, in Dynamics and Fluctuations in Biomedical Photonics XIV, Proc. of SPIE, ed. by V. V. Tuchin, K. V. Larin, M. J. Leahy, R. K. Wang, vol. 10063, (SPIE Press, Bellingham, 2017), p. 100631L.  https://doi.org/10.1117/12.2253023CrossRefGoogle Scholar
  14. 14.
    I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Optical properties of colorectal muscle in visible/NIR range, in Biophotonics: Photonic Solutions for Better Health Care VI, Proc. of SPIE, ed. by J. Popp, V. V. Tuchin, F. S. Pavone, vol. 10685, (SPIE Press, Bellingham, 2018), p. 106853D.  https://doi.org/10.1117/12.2306586CrossRefGoogle Scholar
  15. 15.
    I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Measuring optical properties of human liver between 400 and 1000 nm. Quant. Electron. 49(1), 13–19 (2019)ADSCrossRefGoogle Scholar
  16. 16.
    A.N. Bashkatov, E.A. Genina, M.D. Kosintseva, V.I. Koshubey, S.Y. Gorodkov, V.V. Tuchin, Optical properties of peritoneal biological tissues in the range of 350–2500 nm. Opt. Spectrosc. 120(1), 1–8 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    A.N. Bashkatov, E.A. Genina, V.I. Koshubey, V.V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    A.N. Bashkatov, E.A. Genina, V.I. Kochubey, E.A. Kolesnikova, V.V. Tuchin, Optical properties of human colon tissues in the 350–2500 spectral range. Quant. Electron. 44(8), 779–784 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    L.-H. Wang, S.L. Jacques, L.-Q. Zheng, MCML – Monte Carlo modeling of photon transport in multi-layered tissues. Comput. Met. Progr. Biomed. 47(2), 131–146 (1995)CrossRefGoogle Scholar
  20. 20.
    S.A. Prahl, M.J.C. Van Gemert, A.J. Welch, Determining the optical properties of turbid media by using the adding-doubling method. Appl. Opt. 32(4), 559–568 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    S. Peña-Llopis, J. Brugarolas, Simultaneous isolation of high-quality DNA, RNA, miRNA and proteins from tissues for genomic applications. Nat. Protoc. 8(11), 2240–2255 (2013)CrossRefGoogle Scholar
  22. 22.
    R.R. Anderson, J.A. Parish, Optical properties of human skin, in The Science of Photomedicine, ed. by J. D. Regan, J. A. Parish, (Plenum Press, New York, 1982), pp. 147–194CrossRefGoogle Scholar
  23. 23.
    S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, V.V. Tuchin, Wavelength dependence of the refractive index of human colorectal tissues: comparison between healthy mucosa and cancer. J. Biomed. Photon. Eng. 2(4), 040307 (2016)CrossRefGoogle Scholar
  24. 24.
    I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Water content and scatterers dispersion evaluation in colorectal tissues. J. Biomed. Photon. Eng. 3(4), 040301 (2017)CrossRefGoogle Scholar
  25. 25.
    H. Ding, J.Q. Lu, W.A. Wooden, P.J. Kragel, X.H. Hu, Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm. Phys. Med. Biol. 51(6), 1479–1489 (2006)CrossRefGoogle Scholar
  26. 26.
    Z. Deng, J. Wang, Q. Ye, T. Sun, W. Zhou, J. Mei, C. Zhang, J. Tian, Determination of continuous complex refractive index dispersion of biotissue based on internal reflection. J. Biomed. Opt. 21(1), 015003 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, J. Tian, Measurement of the refractive index of whole blood and its components for a continuous spectral region. J. Biomed. Opt. 24(3), 035003 (2019)ADSGoogle Scholar
  28. 28.
    X.U. Zhang, D.J. Faber, A.L. Post, T.G. van Leeuwen, H.J.C.M. Sterenborg, Refractive index measurement using single fiber reflectance spectroscopy. J. Biophoton. 12(7), e201900019 (2019)Google Scholar
  29. 29.
    G. Vargas, K.F. Chan, S.L. Thomsen, A.J. Welch, Use of osmotically active agents to alter optical properties of tissue: effects on the detected fluorescence signal measured through skin. Laser Surg. Med. 29, 213–220 (2001)CrossRefGoogle Scholar
  30. 30.
    E.A. Genina, A.N. Bashkatov, A.A. Zubkova, V.V. Tuchin, I. Yaroslavsky, G.B. Altshuler, Optical clearing of human skin: comparative study of permeability and dehydration of intact and photothermally perforated skin. J. Biomed. Opt. 13(2), 021102 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    D.K. Tuchina, A.N. Bashkatov, A.B. Bucharskaya, E.A. Genina, V.V. Tuchin, Study of glycerol diffusion in skin and myocardium ex vivo under the conditions of developing alloxan-induced diabetes. J. Biomed. Photon. Eng. 3(2), 020302 (2017)CrossRefGoogle Scholar
  32. 32.
    V.D. Genin, D.K. Tuchina, A.N. Bashkatov, E.A. Genina, V.V. Tuchin, Polyethylene glycol diffusion in ex vivo skin tissue. AIP Conf. Proc. 1688, 030028 (2015)CrossRefGoogle Scholar
  33. 33.
    L.M. Oliveira, M.I. Carvalho, E.M. Nogueira, V.V. Tuchin, The characteristic time of glucose diffusion measured for muscle tissue at optical clearing. Laser Phys. 23, 075606 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    L.M. Oliveira, M.I. Carvalho, E.M. Nogueira, V.V. Tuchin, Diffusion characteristics of ethylene glycol in skeletal muscle. J. Biomed. Opt. 20(5), 051019 (2015)ADSCrossRefGoogle Scholar
  35. 35.
  36. 36.
    L.D. Robertson, D. Roper, Laboratory methods used in the investigation of the haemolytic anaemias, in Dacie and Lewis Practical Haematology, ed. by B. J. Bain, I. Bates, M. A. Laffan, 11th edn., (Elsevier, Amsterdam, 2011)Google Scholar
  37. 37.
    G.M. Hale, M.R. Querry, Optical constants of water in the 200nm to 200 micron wavelength region. Appl. Opt. 12, 555–563 (1973)ADSCrossRefGoogle Scholar
  38. 38.
  39. 39.
  40. 40.
    G. Zonios, L.T. Perelman, V. Backman, R. Mahoharan, M. Fitzmaurice, J. van Dam, M.S. Feld, Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo. Appl. Opt. 38(31), 6628–6637 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    D.K. Tuchina, P.A. Timoshina, V.V. Tuchin, A.N. Bashkatov, E.A. Genina, Kinetics of rat skin optical clearing at topical application of 40%Glucose: ex vivo and in vivo studies. IEEE J. Sel. Top. Quant. Electron. 25(1), 7200508 (2019)CrossRefGoogle Scholar
  42. 42.
    G. Vargas, E.K. Chan, J.K. Barton, H.G. Rylander, A.J. Welch, Use of an agent to reduce scattering in skin. Laser Surg. Med. 24, 133–141 (1999)CrossRefGoogle Scholar
  43. 43.
    G. Einstein, P. Aruna, S. Ganesan, Monte Carlo based model for diffuse reflectance from turbid media for the diagnosis of epithelial dysplasia. Optik 181, 828–835 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    G. Einstein, K. Udayakumar, P.R. Aruna, D. Koteeswaran, S. Ganesan, Diffuse reflectance spectroscopy for monitoring physiological and morphological changes in oral cancer. Optik 127, 1479–1485 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    X. Wen, Z. Mao, Z. Han, V.V. Tuchin, D. Zhu, In vivo skin optical clearing by glycerol solutions: mechanism. J. Biophotonics 3(1–2), 44–52 (2010)Google Scholar
  46. 46.
    D. Zhu, K.V. Larin, Q. Luo, V.V. Tuchin, Recent progress in tissue optical clearing. Laser Photon. Rev. 7(5), 732–757 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    X. Xu, Q. Zhu, Evaluation of skin optical clearing enhancement with Azone as a penetration enhancer. Opt. Commum. 279, 223–228 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    A. Sdobnov, M.E. Darvin, E.A. Genina, A.N. Bashkatov, J. Lademan, V.V. Tuchin, Recent progress in tissue optical clearing for spectroscopic application. Spectrochim. Acta A Mol. Biomol. Spectrosc. 197, 216–229 (2018)ADSCrossRefGoogle Scholar
  49. 49.
    X. Xu, R. Wang, J.B. Elder, Optical clearing effect on gastric tissues immersed with biocompatible chemical agents investigated by near infrared reflectance spectroscopy. J. Phys. D Appl. Phys. 36, 1707–1713 (2003)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luís Manuel Couto Oliveira
    • 1
  • Valery Victorovich Tuchin
    • 2
    • 3
    • 4
    • 5
  1. 1.Physics Department and Center for Innovation in Engineering and Industrial TechnologyPolytechnic Institute of Porto – School of EngineeringPortoPortugal
  2. 2.Department of Optics and BiophotonicsSaratov State UniversitySaratovRussia
  3. 3.Institute of Precision Mechanics and Control of the RASSaratovRussia
  4. 4.Bach Institute of BiochemistryResearch Center of Biotechnology of the RASMoscowRussia
  5. 5.Tomsk State University, Tomsk & ITMO UniversitySt. PetersburgRussia

Personalised recommendations