Advertisement

Controlling the Optical Properties of Biological Materials

  • Luís Manuel Couto Oliveira
  • Valery Victorovich Tuchin
Chapter
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

To overcome the high light-scattering problem that occurs in biological tissues, we present in this chapter the different clearing methods known today. Most of these methods have benefits and downsides, depending on the application for which they are used. The optical immersion method is introduced as a better, reliable, and reversible way to turn tissues clear. The major benefits and advantages of this method such as its reversibility, the lack of side effects, and application in large wavelength range will be presented. A description of the molecular diffusion of optical clearing agents is given to explain the reduction in the refractive index mismatch that natural tissues have.

Keywords

Control of optical properties Temperature control Mechanical control Tissue optical clearing Immersion optical clearing Scattering reduction Refractive index matching 

References

  1. 1.
    H.-U. Dodt, U. Leischner, A. Schierloh, N. Järling, C.P. Mauch, K. Deininger, J.M. Deussing, M. Eder, W. Zieglgänsberger, K. Becker, Ultramicroscopy: three dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4(4), 331–336 (2007)CrossRefGoogle Scholar
  2. 2.
    A.Y. Sdobnov, M.E. Darvin, E.A. Genina, A.N. Bashkatov, J. Lademann, V.V. Tuchin, Recent progress in tissue clearing for spectroscopic application. Spectrochim. Acta A Mol. Biomol. Spectrosc. 197, 216–229 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    A. Malpica, M. Follen, Near real time confocal microscopy of amelanotic tissue: dynamics of aceto-whitening enable nuclear segmentation. Opt. Express 6(2), 40–48 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    R.A. Drezek, T. Collier, C.K. Brookner, A. Malpica, R. Lotan, R.R. Richards-Kortum, M. Follen, Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid. Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000)CrossRefGoogle Scholar
  5. 5.
    B. Pogue, H.B. Kaufman, A. Zelenchuk, W. Harper, G.C. Burke, E.E. Burke, D.M. Harper, Analysis of acetic-induced whitening of high-grade squamous intraepithelial lesions. J. Biomed. Opt. 6(4), 397–403 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    C.J. Balas, G.C. Themelis, E.P. Prokopakis, I. Orfanudaki, E. Koumantakis, E. Helidonis, In vivo detection and staging of epithelial dysplasias and malignancies based on the quantitative assessment of acetic acid-tissue interaction kinetics. J. Photochem. Photobiol. B Biol. 53(1–3), 153–157 (1999)CrossRefGoogle Scholar
  7. 7.
    G. Longcroft-Wheaton, P. Bhandari, Acetowhitening as a novel diagnostic tool for the diagnosis and characterisation of neoplasia within Barrett’s oesophagus. Gut 61, A258 (2012)Google Scholar
  8. 8.
    K. Gutiérrez-Fragoso, H.G. Acosta-Mesa, N. Cruz-Ramírez, R. Hernández-Jiménez, Automatic classification of acetowhite temporal patterns to identify precursor lesions of cervical cancer. J. Phys. Conf. Ser. 475(1), 012004-1–012004-10 (2013)Google Scholar
  9. 9.
    T.T. Wu, J.Y. Qu, Assessment of the relative contribution of cellular components to the acetowhitening effect in cell cultures and suspensions using elastic light-scattering spectroscopy. Appl. Opt. 46(21), 4834–4842 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    V.V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, Bellingham, 2006)Google Scholar
  11. 11.
    J. Lin, S. The, W. Zheng, Z. Huang, Multimodal nonlinear optical microscopic imaging provides new insights into acetowhitening mechanisms in live mammalian cells without labeling. Biomed. Opt. Express 5(9), 3116–3122 (2014)CrossRefGoogle Scholar
  12. 12.
    O. Marina, A. Trujillo, C. Sanders, K. Burnett, J.P. Freyer, J.R. Mourant, The effect of acetic acid on mammalian cells, in Biomedical Optics and 3-D Imaging, OSA Technical Digest (CD), (Optical Society of America, Washington, DC, 2010), p. BSuD74CrossRefGoogle Scholar
  13. 13.
    R. Drezek, A. Dunn, R. Richards-Kortum, Light scattering from cells: finite-difference time-domain simulations and goniometric measurements. Appl. Opt. 38(16), 3651–3661 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    A.J. Welch, M.J.C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue, 2nd edn. (Springer, Dordrecht, 2011)CrossRefGoogle Scholar
  15. 15.
    E.D. Jansen, T.G. van Leeuwen, M. Motamedi, C. Borst, A.J. Welch, Temperature dependence of the absorption coefficient of water for midinfrared laser radiation. Laser Surg. Med. 14(3), 258–268 (1994)CrossRefGoogle Scholar
  16. 16.
    B.I. Lange, T. Brendel, G. Hüttmann, Temperature dependence of light absorption in water at holmium and thulium laser wavelengths. Appl. Opt. 41(27), 5797–5803 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    L. Cordone, A. Cupane, M. Leone, E. Vitrano, Optical absorption spectra of deoxy- and oxyhemoglobin in the temperature range 300–320 K. Biophys. Chem. 24(3), 259–275 (1986)CrossRefGoogle Scholar
  18. 18.
    P.L. San Biagio, E. Vitrano, A. Cupane, F. Madonia, M.U. Palma, Temperature induced difference spectra of oxy- and deoxy-hemoglobin in the near IR, visible and Soret regions. Biochem. Biophys. Res. Commun. 77(4), 1158–1165 (1977)CrossRefGoogle Scholar
  19. 19.
    J.M. Steinke, A.P. Sheperd, Effects of temperature on optical absorbance spectra of oxy-, carboxy- and deoxy-hemoglobin. Clin. Chem. 38(7), 1360–1364 (1992)Google Scholar
  20. 20.
    R. Sfareni, A. Boffi, V. Quaresima, M. Ferrari, Near infrared absorption spectra of human deoxy- and oxyhemoglobin in the temperature range 20–40 degrees C. Biochim. Biophys. Acta 1340(2), 165–169 (1997)CrossRefGoogle Scholar
  21. 21.
    K. Gray, E.F. Slade, The temperature dependence of the optical absorption spectra of some methaemoglobin derivatives. Biochem. Biophys. Res. Commun. 48(4), 1019–1024 (1972)CrossRefGoogle Scholar
  22. 22.
    J.F. Black, N. Wade, J.K. Barton, Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1064 nm. Lasers Surg. Med. 36(2), 155–165 (2005)CrossRefGoogle Scholar
  23. 23.
    J.F. Black, J.K. Barton, Chemical and structural changes in blood undergoing laser photocoagulation. Photochem. Photobiol. 80(1), 89–97 (2004)CrossRefGoogle Scholar
  24. 24.
    A. Kienle, R.A. Hibst, New optimal wavelength for treatment of port wine stains? Phys. Med. Biol. 40(10), 1559–1576 (1995)CrossRefGoogle Scholar
  25. 25.
    W. Jia, B. Choi, W. Franco, J. Lotfi, B. Majaron, G. Aguilar, J.S. Nelson, Treatment of cutaneous vascular lesions using multiple-intermittent cryogen spurts and two-wavelength laser pulses: numerical and animal studies. Laser Surg. Med. 39(6), 494–503 (2007)CrossRefGoogle Scholar
  26. 26.
    I.F. Cilesiz, A.J. Welch, Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta. Appl. Opt. 32(4), 477–487 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    S. Jaywant, B. Wilson, M. Patterson, L. Lilge, T. Flotte, J. Woolsey, C. McCulloch, Temperature dependent changes in the optical absorption and scattering spectra of tissues: correlation with ultrastructure. Proc. SPIE 1882, 218–229 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    L. Oliveira, M.I. Carvalho, E. Nogueira, V.V. Tuchin, Skeletal muscle dispersion (400–1000 nm) and kinetics at optical clearing. J. Biophotonics 11(1), e201700094 (2018)CrossRefGoogle Scholar
  29. 29.
    H.S. Dhadwal, R.R. Ansari, M.A. DellaVecchia, Coherent fiber optic sensor for early detection of caractogenesis in the human eye lens. Opt. Eng. 32(2), 233–238 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    B. Grzegorzewski, S. Yermolenko, Speckle in far-field produced by fluctuations associated with phase separation. Proc. SPIE 2647, 343–349 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    B. Choi, T.E. Milner, J. Kim, J.N. Goodman, G. Vargas, G. Ahuilar, J.S. Nelson, Use of optical coherence tomography to monitor biological tissue during cryosurgery. J. Biomed. Opt. 9(2), 282–286 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    V.V. Tuchin, Tissue Optics – Light Scattering Methods and Instruments for Medical Diagnosis, 3rd edn. (SPIE Press, Bellingham, 2015)CrossRefGoogle Scholar
  33. 33.
    P.O. Rol, Optics for Transscleral Laser Applications, Dissertation for the degree of Doctor of Natural Sciences, N9655, Swiss Federal Institute of Technology, Zurich (1992), p. 152Google Scholar
  34. 34.
    E.K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, A.J. Welch, Effects of compression on soft tissue optical properties. IEEE J. Select. Top. Quant. Electron. 2(4), 943–950 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    A.A. Gurjarpadhye, W.C. Vogt, Y. Liu, C.G. Rylander, Effect of localized mechanical indentation on skin water evaluated using OCT. Int. J. Biomed. Imag. 2011, 817250-1–817250-8 (2011)CrossRefGoogle Scholar
  36. 36.
    M.Y. Kirillin, P.D. Agrba, V.A. Kamensky, In vivo study of the effect of mechanical compression on formation of OCT images of human skin. J. Biophotonics 3(12), 752–758 (2010)CrossRefGoogle Scholar
  37. 37.
    W. Spalteholz, Über das Durchsichtigmachen von menschlichen und tierichen Präparaten und seine theoretischen Bedingungen, nebst Anhang: Über Knochenfärbung (S. Hirzel, Leipzig, 1911)Google Scholar
  38. 38.
    W. Spalteholz, Über das Durchsichtigmachen von menschlichen und tierichen Präparaten und seine theoretischen Bedingungen, nebst Anhang: Über Knochenfärbung (S. Hirzel, Leipzig, 1914)Google Scholar
  39. 39.
    D.S. Richardson, J.W. Lichtman, Clarifying tissue clearing. Cell 162(2), 246–257 (2015)CrossRefGoogle Scholar
  40. 40.
    A. Azaripour, T. Lagerweij, C. Scharfbillig, A.E. Jadczak, B. Willershausen, C.J.F. van Noorden, A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Prog. Histochem. Cytochem. 51, 9–23 (2016)CrossRefGoogle Scholar
  41. 41.
    E.A. Genina, A.N. Bashkatov, Y.P. Sinichkin, I.Y. Yanina, V.V. Tuchin, Optical clearing of biological tissues: prospects of application in medical diagnosis and phototherapy. J. Biomed. Photon. Eng. 1(1), 22–58 (2015)CrossRefGoogle Scholar
  42. 42.
    D. Zhu, K.V. Larin, Q. Luo, V.V. Tuchin, Recent progress in tissue optical clearing. Laser Photon. Rev. 7(5), 732–757 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    M.S.C. Kauhanen, A.M. Salmi, E.K. Von Boguslawsky, I.V.V. Leivo, S.L. Asko-Seljavaara, Muscle fiber diameter and muscle type distribution following free microvascular muscle transfers: a prospective study. Microsurgery 18(2), 137–144 (1998)CrossRefGoogle Scholar
  44. 44.
    W.L. Bragg, A.B. Pippard, The form birefringence of macromolecules. Acta Cryst. 6, 865–867 (1953)CrossRefGoogle Scholar
  45. 45.
    L. Oliveira, A. Lage, M. Pais Clemente, V.V. Tuchin, Optical characterization and composition of abdominal wall muscle from rat. Opt. Laser. Eng. 47(6), 667–672 (2009)CrossRefGoogle Scholar
  46. 46.
    V.V. Tuchin, I.L. Maksimova, D.A. Zimnyakov, I.L. Kon, A.H. Mavlutov, A.A. Mishin, Light propagation in tissues with controlled optical properties. J. Biomed. Opt. 2(4), 401–417 (1997)ADSCrossRefGoogle Scholar
  47. 47.
    V. Tuchin, I. Maksimova, D. Zimnyakov, I. Kon, A. Mavlutov, A. Mishin, Light propagation in tissues with controlled optical properties. Proc. SPIE 2925, 118–132 (1996)ADSCrossRefGoogle Scholar
  48. 48.
    A. Kotyk, K. Janacek, Membrane Transport: An Interdisciplinary Approach (Plenum Press, New York, 1997)Google Scholar
  49. 49.
    A.N. Bashkatov, E.A. Genina, V.V. Tuchin, Measurement of glucose diffusion coefficients in human tissues, Chapter 19, in Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, ed. by V. V. Tuchin, (Taylor & Francis Group LLC, CRC Press, London, 2009), pp. 87–621Google Scholar
  50. 50.
    A.N. Bashkatov, E.A. Genina, Y.P. Sinichkin, V.I. Kochubey, N.A. Lakodina, V.V. Tuchin, Glucose and mannitol diffusion in human dura mater. Biophys. J. 85(5), 3310–3318 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    L.M. Oliveira, M.I. Carvalho, E.M. Nogueira, V.V. Tuchin, The characteristic time of glucose diffusion measured for muscle tissue at optical clearing. Laser Phys. 23(7), 075606-1–075606-6 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    L.M. Oliveira, M.I. Carvalho, E.M. Nogueira, V.V. Tuchin, Diffusion characteristics of ethylene glycol in skeletal muscle. J. Biomed. Opt. 20(5), 051019-1–051019-10 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    L.M. Oliveira, M.I. Carvalho, E.M. Nogueira, V.V. Tuchin, Optical clearing mechanisms characterization in muscle. J. Innov. Opt. Health Sci. 9(5), 1650035-1–1650035-19 (2016)CrossRefGoogle Scholar
  54. 54.
    S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L.M. Oliveira, V.V. Tuchin, Glucose diffusion in colorectal mucosa – a comparative study between normal and cancer tissues. J. Biomed. Opt. 22(9), 091506-1–091506-12 (2017)ADSCrossRefGoogle Scholar
  55. 55.
    D.J. Tomlinson, Temperature dependent self-diffusion coefficient measurements of glycerol by pulsed N.M.R. technique. Mol. Phys. 25(3), 735–738 (1972)ADSCrossRefGoogle Scholar
  56. 56.
    F. Mallamace, C. Corsaro, D. Mallamace, E. Vasi, C. Vasi, H.E. Stanley, Some considerations on the transport properties of water-glycerol suspensions. J. Chem. Phys. 144, 014501 (2016)ADSzbMATHCrossRefGoogle Scholar
  57. 57.
    M.A. Araújo, E.C. Ferreira, A.M. Cunha, M. Mota, Determination of diffusion coefficients of glycerol and glucose from starch based thermoplastic compounds on stimulated physiological solution. J. Mater. Sci. Mater. Med. 16(3), 239–246 (2005)CrossRefGoogle Scholar
  58. 58.
    G. Ternström, A. Sjöstrand, G. Aly, Å. Jernqvist, Mutual diffusion coefficients of water + ethylene glycol and water + glycerol mixtures. J. Chem. Eng. Data 41(4), 876–879 (1996)CrossRefGoogle Scholar
  59. 59.
    A.L. Weber, Kinetics of organic transformations under mild aqueous conditions: implications for the origin of life and its metabolism. Orig. Life Evol. Biosph. 34(5), 473–495 (2004)ADSCrossRefGoogle Scholar
  60. 60.
    G. D’Errico, O. Ortona, F. Capuano, V. Vitagliano, Diffusion coefficients for the binary system glycerol + water at 25°C. A velocity correlation study. J. Chem. Data 49, 1665–1670 (2004)CrossRefGoogle Scholar
  61. 61.
    J.H. Kim, M.J. Jang, J. Choi, E. Lee, K.D. Song, J. Cho, K.T. Kim, H.J. Cha, W. Sun, Optimizing tissue-clearing conditions based on analysis of the critical factors affecting tissue clearing procedures. Sci. Rep. 8(1), 12815 (2018)ADSCrossRefGoogle Scholar
  62. 62.
    D.W. Leonard, K.M. Meek, Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma. Biophys. J. 72(3), 1382–1387 (1997)ADSCrossRefGoogle Scholar
  63. 63.
    K.M. Meek, S. Dennis, S. Khan, Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells. Biophys. J. 85(4), 2205–2212 (2003)CrossRefGoogle Scholar
  64. 64.
    K.M. Meek, D.W. Leonard, C.J. Connon, S. Dennis, S. Khan, Transparency, swelling and scarring in the corneal stroma. Eye 17(8), 927–936 (2003)CrossRefGoogle Scholar
  65. 65.
    O. Zhernovaya, O. Sydoruk, V. Tuchin, A. Douplik, The refractive index of human hemoglobin in the visible range. Phys. Med. Biol. 56(13), 4013–4021 (2011)CrossRefGoogle Scholar
  66. 66.
    R. Graaff, J.G. Aarnoudse, J.R. Zijp, P.M.A. Sloot, F.F.M. De Mul, J. Greve, M.H. Koelink, Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations. Appl. Opt. 31(10), 1370–1376 (1992)ADSCrossRefGoogle Scholar
  67. 67.
    H. Liu, B. Beauvoit, M. Kimura, B. Chance, Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity. J. Biomed. Opt. 1(2), 200–211 (1996)ADSCrossRefGoogle Scholar
  68. 68.
    I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Water content and scatterers dispersion evaluation in colorectal tissues. J. Biomed. Photon. Eng. 3(4), 040301-1–040301-10 (2017)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luís Manuel Couto Oliveira
    • 1
  • Valery Victorovich Tuchin
    • 2
    • 3
    • 4
    • 5
  1. 1.Physics Department and Center for Innovation in Engineering and Industrial TechnologyPolytechnic Institute of Porto – School of EngineeringPortoPortugal
  2. 2.Department of Optics and BiophotonicsSaratov State UniversitySaratovRussia
  3. 3.Institute of Precision Mechanics and Control of the RASSaratovRussia
  4. 4.Bach Institute of BiochemistryResearch Center of Biotechnology of the RASMoscowRussia
  5. 5.Tomsk State University, Tomsk & ITMO UniversitySt. PetersburgRussia

Personalised recommendations