Advertisement

Quasi-particle Bases of Principal Subspaces of Affine Lie Algebras

  • Marijana ButoracEmail author
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 37)

Abstract

This note is a survey of recent results on the construction of combinatorial bases of principal subspaces of generalized Verma module \(N(k\Lambda _0)\) and standard module \(L(k\Lambda _0)\) appearing in [5, 6, 7]. By using these bases, we obtain characters of principal subspaces.

Keywords

Affine Lie algebras Vertex operator algebras Principal subspaces Combinatorial bases 

Notes

Acknowledgements

The author is partially supported by the Croatian Science Foundation under the project 2634 and by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund—the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004).

References

  1. 1.
    Andrews, G.E.: Partitions and Durfee dissection. Am. J. Math. 101(3), 735–742 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ardonne, E., Kedem, R., Stone, M.: Fermionic characters and arbitrary highest-weight integrable \(\widehat{\mathfrak{sl}}_{r+1}\)-modules. Commun. Math. Phys. 264(2), 427–464 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Baranović, I.: Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of level 2 standard modules for \(D^{(1)}_4\). Commun. Algebra 39(3), 1007–1051 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Baranović, I., Primc, M., Trupčević, G.: Bases of Feigin-Stoyanovsky’s type subspaces for \(C^{(1)}_l\). Ramanujan J. 45(1), 265–289 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Butorac, M.: Quasi-particle bases of principal subspaces of the affine Lie algebra of type \(G_{2}^{(1)}\). Glas. Mat. Ser. III 52(1), 79–98 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Butorac, M.: Quasi-particle bases of principal subspaces for the affine Lie algebras of types \(B^{(1)}_l\) and \(C^{(1)}_l\). Glas. Mat. Ser. III 51(1), 59–108 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Butorac, M.: Combinatorial bases of principal subspaces for the affine Lie algebra of type \(B_2^{(1)}\). J. Pure Appl. Algebra 218(3), 424–447 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Butorac M., Sadowski, C.: Combinatorial bases of principal subspaces of modules for twisted affine Lie algebras of type \(A_{2n+1}^{(2)}\), \(D_n^{(2)}\), \(E_6^{(2)}\) and \(D^{(3)}_4\). Preprint (2018)Google Scholar
  9. 9.
    Calinescu, C.: Intertwining vertex operators and certain representations of \(\widehat{sl(n)}\). Commun. Contemp. Math. 10(1), 47–79 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Calinescu, C.: Principal subspaces of higher-level standard \(\widehat{sl(3)}\)-modules. J. Pure Appl. Algebra 210(2), 559–575 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of principal subspaces of standard \(A_2^{(2)}\)-modules, I. Internat. J. Math. 25(7), 1450063 (2014) 44 ppGoogle Scholar
  12. 12.
    Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types \(A, D, E\). J. Algebra 323(1), 167–192 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of certain \(A^{(1)}_{1}\) -modules, II: higher-level case. J. Pure Appl. Algebra 212(8), 1928–1950 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of certain \(A^{(1)}_{1}\)-modules, I: level one case. Int. J. Math. 19(1), 71–92 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Calinescu, C., Milas, A., Penn, M.: Vertex algebraic structure of principal subspaces of basic \(A_{2n}^{(2)}\)-modules. J. Pure Appl. Algebra 220(5), 1752–1784 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Capparelli, S., Lepowsky, J., Milas, A.: The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators. Ramanujan J. 12(3), 379–397 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Capparelli, S., Lepowsky, J., Milas, A.: The Rogers-Ramanujan recursion and intertwining operators. Commun. Contemp. Math. 5(6), 947–966 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Dasmahapatra, S., Dedem, R., Klassen, T.R., McCoy, B.M., Melzer, E.: Quasi-particles, conformal field theory and \(q\) series. Yang-Baxter equations in Paris (1992). Int. J. Mod. Phys. B 7, 3617–3648 (1993)zbMATHCrossRefGoogle Scholar
  19. 19.
    Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators. Progress in Mathematics, vol. 112. Birkhäuser, Boston (1993)zbMATHCrossRefGoogle Scholar
  20. 20.
    Dong, C., Li, H., Mason, G.: Simple currents and extensions of vertex operator algebras. Commun. Math. Physics 180(3), 671–707 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Feigin, B., Feigin, E., Jimbo, M., Miwa, T., Mukhin, E.: Principal \(\widehat{sl_3}\) subspaces and quantum Toda Hamiltonian. Algebraic analysis and around, pp. 109–166, Advanced Studies in Pure Mathematics, 54. Mathematical Society of Japan, Tokyo, pp. 109–166 (2009)Google Scholar
  22. 22.
    Feigin, E.: The PBW filtration. Represent. Theory 13, 165–181 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Stoyanovskiǐ, A.V.; Feǐgin, B. L.: Functional models of the representations of current algebras, and semi-infinite Schubert cells. Funktsional. Anal. i Prilozhen. 28(1), 96, 68–90 (1994); Funct. Anal. Appl. 28(1), 55–72 (1994); Feǐgin, B.L., Stoyanovskiǐ, A.V.: Quasi-particles models for the representations of Lie algebras and geometry of flag manifold. Preprint (1993) arXiv:hep-th/9308079. Cited 30 Dec 2018
  24. 24.
    Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc. 104 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Georgiev, G.: Combinatorial constructions of modules for infinite-dimensional Lie algebras, I. Principal subspace. J. Pure Appl. Algebra 112(3), 247–286 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Humphreys, J.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, vol. 9. Springer, New York (1972)zbMATHCrossRefGoogle Scholar
  27. 27.
    Jerković, M.: Character formulas for Feigin-Stoyanovsky’s type subspaces of standard \(\widetilde{sl(3, C)}\)-modules. Ramanujan J. 27(3), 357–376 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Jerković, M.: Recurrence relations for characters of affine Lie algebra \(A_l^{(1)}\). J. Pure Appl. Algebra 213(6), 913–926 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Jerković, M., Primc, M.: Quasi-particle fermionic formulas for \((k, 3)\)-admissible configurations. Cent. Eur. J. Math. 10(2), 703–721 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)zbMATHCrossRefGoogle Scholar
  31. 31.
    Kawasetsu, K.: The free generalized vertex algebras and generalized principal subspaces. J. Algebra 444, 20–51 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Kawasetsu, K.: The intermediate vertex subalgebras of the lattice vertex operator algebras. Lett. Math. Phys. 104(2), 157–178 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Kožić, S.: Principal subspaces for double Yangian \(DY(sl2)\). J. Lie Theory 28(3), 673–694 (2018)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Kožić, S.: Vertex operators and principal subspaces of level one for \(U_q(\widehat{\mathfrak{sl}_{2}})\). J. Algebra 455, 251–290 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Kožić, S.: Principal subspaces for quantum affine algebra \(U_q(A^{(1)}_n)\). J. Pure Appl. Algebra 218(11), 2119–2148 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Lepowsky, J., Li, H.: Introduction to Vertex Operator Algebras and Their Representations. Progress in Mathematics, vol. 227, xiv+318 pp. Birkhäuser Boston, Inc., Boston (2004)zbMATHCrossRefGoogle Scholar
  37. 37.
    Lepowsky, J., Primc, M.: Structure of the Standard Modules for the Affine Lie Algebra \(A_1^{(1)}\). Contemporary Mathematics, vol. 46, ix+84 pp. American Mathematical Society, Providence (1985)Google Scholar
  38. 38.
    Lepowsky, J., Wilson, R.L.: The structure of standard modules, I: universal algebras and the Rogers-Ramanujan identities. Invent. Math. 77, 199–290 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Li, H.: Local systems of vertex operators, vertex superalgebras and modules. J. Pure Appl. Algebra 109, 143–195 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Meurman, A., Primc, M.: Annihilating fields of standard modules of \(\widetilde{sl}(2, \mathbb{C})\) and combinatorial identities. Memoirs Amer. Math. Soc. 137(652) (1999)Google Scholar
  41. 41.
    Milas, A., Penn, M.: Lattice vertex algebras and combinatorial bases: general case and \(\cal{W}\)-algebras. New York J. Math. 18, 621–650 (2012)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Penn, M., Sadowski, C.: Vertex-algebraic structure of principal subspaces of the basic modules for twisted affine Lie algebras of type \(A_{2n-1}^{(2)}, D_n^{(2)}, E_6^{(2)}\). J. Algebra 496, 242–291 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Penn, M., Sadowski, C.: Vertex-algebraic structure of principal subspaces of basic \(D_4^{(3)}\)-modules. Ramanujan J. 43(3), 571–617 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Penn, M., Sadowski, C., Webb, G.: Principal subspaces of twisted modules for certain lattice vertex operator algebras. Preprint (2018)Google Scholar
  45. 45.
    Primc, M.: Combinatorial basis of modules for affine Lie algebra \(B_2^{(1)}\). Cent. Eur. J. Math. 11, 197–225 (2013)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Sadowski, C.: Presentations of the principal subspaces of the higher-level standard \(\widehat{\mathfrak{sl}(3)}\)-modules. J. Pure Appl. Algebra 219(6), 2300–2345 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Sadowski, C.: Principal subspaces of higher-level standard \(\widehat{sl(n)}\)-modules. Int. J. Math. 26(08), 1550053 (2015) 35 ppMathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Trupčević, G.: Characters of Feigin-Stoyanovsky’s type subspaces of level one modules for affine Lie algebras of types \(A_l^{(1)}\) and \(D_4^{(1)}\). Glas. Mat. Ser. III 46(1), 49–70 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Trupčević, G.: Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of level 1 standard mod-ules for \(\widetilde{s}l(l+1, C)\). Commun. Algebra 38(10), 3913–3940 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Trupčević, G.: Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of higher-level standard \(\widetilde{s}l(l+1, C)\)-modules. J. Algebra 322(10), 3744–3774 (2009)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of RijekaRijekaCroatia

Personalised recommendations