Advertisement

Structure Preserving Preconditioning for Frame-Based Image Deblurring

  • Davide BianchiEmail author
  • Alessandro Buccini
  • Marco Donatelli
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 36)

Abstract

Regularizing preconditioners for accelerating the convergence of iterative regularization methods and improving their accuracy have been extensively investigated both in Hilbert and Banach spaces. For deconvolution problems, the classical approach defines preconditioners based on the circular convolution. On the other hand, for \(\ell _2\) regularization methods, it has been recently shown that a preconditioner preserving the structure of the convolution operator can be more effective. Such a preconditioner can improve both restoration quality and robustness of the method with respect to the choice of the regularization parameter when compared with the non-structured ones. In this paper we explore the use of structure preserving preconditioning for \(\ell _1\)-norm regularization in the wavelet domain in image deblurring. A recently proposed preconditioned variant of the linearized Bregman iteration is modified to preserve the structure of the coefficient matrix according to the imposed boundary conditions. The structured preconditioner is chosen as an approximation of a regularized inverse of the convolution matrix. Selected numerical experiments show that our preconditioning strategy improves the previous results obtained with circulant preconditioning providing restorations with lower ringing effects and sharper details.

Keywords

Image deblurring Sparse regularization Structured preconditioning 

Notes

Acknowledgements

The authors are members of the INdAM Research group GNCS, which has partially supported this work.

References

  1. 1.
    Aricò, A., Donatelli, M., Serra-Capizzano, S.: Spectral analysis of the anti-reflective algebra. Linear Algebra Appl. 428, 657–675 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brianzi, P., Di Benedetto, F., Estatico, C.: Improvement of space-invariant image deblurring by preconditioned Landweber iterations. SIAM J. Sci. Comput. 30, 1430–1458 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Buccini, A.: Regularizing preconditioners by non-stationary iterated Tikhonov with general penalty term. Appl. Num. Math. 116, 64–81 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Buccini, A., Park, Y., Reichel, L.: Numerical aspects of the nonstationary modified linearized Bregman algorithm. Appl. Math. Comput. 337(15), 386–398 (2018)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Buccini, A., Reichel, L.: An  \(\ell _2\)-\(\ell _{q}\) regularization method for large discrete ill-posed problems. J. Sci. Comput., in PressGoogle Scholar
  7. 7.
    Cai, J.-F., Chan, R., Shen, L., Shen, Z.: Wavelet algorithms for high-resolution image reconstruction. SIAM J. Sci. Comput. 24, 1408–1432 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cai, Y., Donatelli, M., Bianchi, D., Huang, T.Z.: Regularization preconditioners for frame-based image deblurring with reduced boundary artifacts. SIAM J. Sci. Comput. 38, B164–B189 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cai, J.F., Osher, S., Shen, Z.: Linearized Bregman iterations for frame-based image deblurring. SIAM J. Imaging Sci. 2–1, 226–252 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chan, R.H., Riemenschneider, S.D., Shen, L., Shen, Z.: Tight frame: an efficient way for high-resolution image reconstruction. Appl. Comput. Harmon. Anal. 17, 91–115 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chan, R.H., Ng, M.K.: Conjugate gradient method for toeplitz systems. SIAM Rev. 38, 427–482 (1996)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57–11, 1413–1457 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14, 1–46 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dell’Acqua, P.: A note on Taylor boundary conditions for accurate image restoration. Adv. Comput. Math. 43, 1283–1304 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dell’Acqua, P., Donatelli, M., Estatico, C., Mazza, M.: Structure preserving preconditioners for image deblurring. J. Sci. Comput. 72(1), 147–171 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dell’Acqua, P., Donatelli, M., Estatico, C.: Preconditioners for image restoration by reblurring techniques. J. Comput. Appl. Math. 272, 313–333 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Donatelli, M.: Fast transforms for high order boundary conditions in deconvolution problems. BIT 50–3, 559–576 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Donatelli, M., Estatico, C., Martinelli, A., Serra-Capizzano, S.: Improved image deblurring with anti-reflective boundary conditions and re-blurring. Inverse Probl. 22, 2035–2053 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Donatelli, M., Hanke, M.: Fast nonstationary preconditioned iterative methods for ill-posed problems, with application to image deblurring. Inverse Probl. 29, 095008 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Donatelli, M., Martin, D., Reichel, L.: Arnoldi methods for image deblurring with anti-reflective boundary conditions. Appl. Math. Comput. 253, 135–150 (2015)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Donatelli, M., Serra-Capizzano, S.: Antireflective boundary conditions for deblurring problems. J. Electr. Comput. Eng. 2010, Article ID 241467, 18 (survey) (2010)Google Scholar
  22. 22.
    Engl, H.W., Hanke, M., Neubauer, A.: Regularization Methods for Inverse Problems. Kluwer, Dordrecht (1996)CrossRefGoogle Scholar
  23. 23.
    Egger, H., Neubauer, A.: Preconditioning Landweber iteration in Hilbert scales. Numer. Math. 101, 643–662 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Figueiredo, M., Nowak, R.: An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 12–8, 906–916 (2003)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Fan, Y.W., Nagy, J.G.: Synthetic boundary conditions for image deblurring. Linear Algebra Appl. 434, 2244–2268 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Hanke, M., Hansen, P.C.: Regularization methods for large-scale problems. Surv. Math. Indust. 3, 253–315 (1993)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Hanke, M., Nagy, J.: Restoration of atmospherically blurred images by symmetric indefinite conjugate gradient techniques. Inverse Probl. 12, 157–173 (1996)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Hanke, M., Nagy, J., Plemmons, R.: Preconditioned iterative regularization for ill-posed problems. In: Numerical Linear Algebra. Proceedings of the Conference in Numerical Linear Algebra and Scientific Computation, Kent, Ohio, March 13–14 1992, de Gruyter, pp. 141–163 (1993)Google Scholar
  29. 29.
    Hansen, P.C., Nagy, J., O’Leary, D.P.: Deblurring Images Matrices, Spectra and Filtering. SIAM Publications, Philadelphia (2005)zbMATHGoogle Scholar
  30. 30.
    Kilmer, M.E.: Cauchy-like preconditioners for two-dimensional ill-posed problems. SIAM J. Matrix Anal. Appl. 20, 777–799 (1999)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Nagy, J.G., Palmer, K., Perrone, L.: Iterative methods for image deblurring: a MATLAB object oriented approach. Numer. Algorithms 36 73–93 (2004). See also: http://www.mathcs.emory.edu/~nagy/RestoreTools
  32. 32.
    Piana, M., Bertero, M.: Projected Landweber method and preconditioning. Inverse Probl. 13–2, 441–464 (1997)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Serra-Capizzano, S.: A note on anti-reflective boundary conditions and fast deblurring models. SIAM J. Sci. Comput. 25(4) 1307–1325 (2003)Google Scholar
  34. 34.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)Google Scholar
  35. 35.
    Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for   \(\ell _1\)-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1, 143–168 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Davide Bianchi
    • 1
    Email author
  • Alessandro Buccini
    • 2
  • Marco Donatelli
    • 1
  1. 1.Dipartimento di Scienza e Alta TecnologiaUniversità dell’InsubriaComoItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità di CagliariCagliariItaly

Personalised recommendations