Longitudinal Analysis of Fetal MRI in Patients with Prenatal Spina Bifida Repair

  • Kelly PayetteEmail author
  • Ueli Moehrlen
  • Luca Mazzone
  • Nicole Ochsenbein-Kölble
  • Ruth Tuura
  • Raimund Kottke
  • Martin Meuli
  • Andras Jakab
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11798)


Open spina bifida (SB) is one of the most common congenital defects and can lead to impaired brain development. Emerging fetal surgery methods have shown considerable success in the treatment of patients with this severe anomaly. Afterwards, alterations in the brain development of these fetuses have been observed. Currently no longitudinal studies exist to show the effect of fetal surgery on brain development. In this work, we present a fetal MRI neuroimaging analysis pipeline for fetuses with SB, including automated fetal ventricle segmentation and deformation-based morphometry, and demonstrate its applicability with an analysis of ventricle enlargement in fetuses with SB. Using a robust super-resolution algorithm, we reconstructed fetal brains at both pre-operative and post-operative time points and trained a U-Net CNN in order to automatically segment the ventricles. We investigated the change of ventricle shape post-operatively, and the impacts of lesion size, type, and GA at operation on the change in ventricle shape. No impact was found. Prenatal ventricle volume growth was also investigated. Our method allows for the quantification of longitudinal morphological changes to fully quantify the impact of prenatal SB repair and could be applied to predict postnatal outcomes.



Financial support was provided by the OPO Foundation, Anna Müller Grocholski Foundation, the Foundation for Research in Science and the Humanities at the University of Zurich, EMDO Foundation, Hasler Foundation, and the Forschungszentrum für das Kind Grant (FZK).


  1. 1.
    Roach, J.W., Short, B.F., Saltzman, H.M.: Adult consequences of spina bifida: a cohort study. Clin. Orthop. 469(5), 1246–1252 (2011)CrossRefGoogle Scholar
  2. 2.
    Meuli, M., Moehrlen, U.: Fetal surgery for myelomeningocele is effective: a critical look at the whys. Pediatr. Surg. Int. 30(7), 689–697 (2014)CrossRefGoogle Scholar
  3. 3.
    Möhrlen, U., et al.: Benchmarking against the MOMS trial: Zurich results of open fetal surgery for spina bifida. Fetal Diagn. Ther. 5, 1–7 (2019)CrossRefGoogle Scholar
  4. 4.
    Adzick, N.S.: Fetal surgery for myelomeningocele: trials and tribulations. Isabella Forshall Lecture. J. Pediatr. Surg. 47(2), 273–281 (2012)CrossRefGoogle Scholar
  5. 5.
    Aertsen, M., et al.: Reliability of MR imaging-based posterior fossa and brain stem measurements in open spinal dysraphism in the era of fetal surgery. Am. J. Neuroradiol. 40(1), 191–198 (2019)CrossRefGoogle Scholar
  6. 6.
    Kim, K., Habas, P.A., Rousseau, F., Glenn, O.A., Barkovich, A.J., Studholme, C.: Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation. IEEE Trans. Med. Imaging 29(1), 146–158 (2010)CrossRefGoogle Scholar
  7. 7.
    Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schnabel, J.A.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16(8), 1550–1564 (2012)CrossRefGoogle Scholar
  8. 8.
    Kainz, B., et al.: Fast volume reconstruction from motion corrupted stacks of 2D slices. IEEE Trans. Med. Imaging 34(9), 1901–1913 (2015)CrossRefGoogle Scholar
  9. 9.
    Tourbier, S., Bresson, X., Hagmann, P., Thiran, J.-P., Meuli, R., Cuadra, M.B.: An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization. NeuroImage 118, 584–597 (2015)CrossRefGoogle Scholar
  10. 10.
    Ebner, M., et al.: An automated localization, segmentation and reconstruction framework for fetal brain MRI. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 313–320. Springer, Cham (2018). Scholar
  11. 11.
    Tourbier, S., et al.: Automated template-based brain localization and extraction for fetal brain MRI reconstruction. NeuroImage 155, 460–472 (2017)CrossRefGoogle Scholar
  12. 12.
    Wright, R., et al.: Automatic quantification of normal cortical folding patterns from fetal brain MRI. NeuroImage 91, 21–32 (2014)CrossRefGoogle Scholar
  13. 13.
    Keraudren, K., et al.: Automated fetal brain segmentation from 2D MRI slices for motion correction. NeuroImage 101, 633–643 (2014)CrossRefGoogle Scholar
  14. 14.
    Salehi, S.S.M., et al.: Real-time automatic fetal brain extraction in fetal MRI by deep learning. In: IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 720–724 (2018)Google Scholar
  15. 15.
    Habas, P.A., Kim, K., Rousseau, F., Glenn, O.A., Barkovich, A.J., Studholme, C.: Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses. Hum. Brain Mapp. 31(9), 1348–1358 (2010)CrossRefGoogle Scholar
  16. 16.
    Moeskops, P., Viergever, M.A., Mendrik, A.M., de Vries, L.S., Benders, M.J.N.L., Išgum, I.: Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans. Med. Imaging 35(5), 1252–1261 (2016)CrossRefGoogle Scholar
  17. 17.
    Gholipour, A., Akhondi-Asl, A., Estroff, J.A., Warfield, S.K.: Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly. NeuroImage 60(3), 1819–1831 (2012)CrossRefGoogle Scholar
  18. 18.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). Scholar
  19. 19.
    Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M.J., Vercauteren, T.: On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 348–360. Springer, Cham (2017). Scholar
  20. 20.
    Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)CrossRefGoogle Scholar
  21. 21.
    Avants, B.B., et al.: The optimal template effect in hippocampus studies of diseased populations. NeuroImage 49(3), 2457–2466 (2010)CrossRefGoogle Scholar
  22. 22.
    Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54(3), 2033–2044 (2011)CrossRefGoogle Scholar
  23. 23.
    Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)CrossRefGoogle Scholar
  24. 24.
    Winkler, A.M., Ridgway, G.R., Webster, M.A., Smith, S.M., Nichols, T.E.: Permutation inference for the general linear model. NeuroImage 92, 381–397 (2014)CrossRefGoogle Scholar
  25. 25.
    Gholipour, A., et al.: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 7, 476 (2017)CrossRefGoogle Scholar
  26. 26.
    Meuli, M., Meuli-Simmen, C., Hutchins, G.M., Yingling, C.D., Hoffman, K.M., Harrison, M.R., Adzick, N.S.: In utero surgery rescues neurological function at birth in sheep with spina bifida. Nat. Med. 1, 342–347 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kelly Payette
    • 1
    Email author
  • Ueli Moehrlen
    • 2
  • Luca Mazzone
    • 2
  • Nicole Ochsenbein-Kölble
    • 2
  • Ruth Tuura
    • 1
  • Raimund Kottke
    • 3
  • Martin Meuli
    • 2
  • Andras Jakab
    • 1
  1. 1.Center for MR-Research, University Children’s Hospital ZurichZurichSwitzerland
  2. 2.Fetal Surgery and Prenatal Consultation, University Children’s Hospital ZurichZurichSwitzerland
  3. 3.Diagnostic Imaging and Intervention, University Children’s Hospital ZurichZurichSwitzerland

Personalised recommendations