Advertisement

Prediction of Failure of Induction of Labor from Ultrasound Images Using Radiomic Features

  • María Inmaculada García OcañaEmail author
  • Karen López-Linares Román
  • Jorge Burgos San Cristóbal
  • Ana del Campo Real
  • Iván Macía Oliver
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11798)

Abstract

Induction of labor (IOL) is a very common procedure in current obstetrics; about 20% of women who undergo IOL at term pregnancy end up needing a cesarean section (C-section). The standard method to assess the risk of C-section, known as Bishop Score, is subjective and inconsistent. Thus, in this paper a novel method to predict the failure of IOL is presented, based on the analysis of B-mode transvaginal ultrasound (US) images. Advanced radiomic analyses from these images are combined with sonographic measurements (e.g. cervical length, cervical angle) and clinical data from a total of 182 patients to generate the predictive model. Different machine learning methods are compared, achieving a maximum AUC of 0.75, with 69% sensitivity and 71% specificity when using a Random Forest classifier. These preliminary results suggest that features obtained from US images can be used to estimate the risk of IOL failure, providing the practitioners with an objective method to choose the most personalized treatment for each patient.

Keywords

Radiomics Ultrasound Induction of labor Machine learning 

References

  1. 1.
    Al-Adwy, A.M., et al.: Diagnostic accuracy of posterior cervical angle and cervical length in the prediction of successful induction of labor. Int. J. Gynecol. Obstet. 141(1), 102–107 (2018)CrossRefGoogle Scholar
  2. 2.
    Baños, N., Perez-Moreno, A., Julià, C., Murillo-Bravo, C., Coronado, D., Gratacós, E., Deprest, J., Palacio, M.: Quantitative analysis of cervical texture by ultrasound in mid-pregnancy and association with spontaneous preterm birth: cervical texture associated with spontaneous preterm birth. Ultrasound Obstet. Gynecol. 51(5), 637–643 (2018)CrossRefGoogle Scholar
  3. 3.
    Baños, N., et al.: Quantitative analysis of the cervical texture by ultrasound and correlation with gestational age. Fetal Diagn. Ther. 41(4), 265–272 (2017)CrossRefGoogle Scholar
  4. 4.
    Brik, M., Mateos, S., Fernandez-Buhigas, I., Garbayo, P., Costa, G., Santacruz, B.: Sonographical predictive markers of failure of induction of labour in term pregnancy. J. Obstet. Gynaecol. 37(2), 179–184 (2017)CrossRefGoogle Scholar
  5. 5.
    Burgos-Artizzu, X.P., Perez-Moreno, A., Coronado-Gutierrez, D., Gratacos, E., Palacio, M.: Evaluation of an improved tool for non-invasive prediction of neonatal respiratory morbidity based on fully automated fetal lung ultrasound analysis. Sci. Rep. 9(1), 1950 (2019)CrossRefGoogle Scholar
  6. 6.
    Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)CrossRefGoogle Scholar
  7. 7.
    van Griethuysen, J.J., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), 104–107 (2017)CrossRefGoogle Scholar
  8. 8.
    Kehila, M., Abouda, H., Sahbi, K., Cheour, H., Chanoufi, M.B.: Ultrasound cervical length measurement in prediction of labor induction outcome. NPM 9(2), 127–131 (2016)CrossRefGoogle Scholar
  9. 9.
    Kolkman, D., et al.: The bishop score as a predictor of labor induction success: a systematic review. Am. J. Perinatol. 30(08), 625–630 (2013)CrossRefGoogle Scholar
  10. 10.
    Obando, V.P., Arana, A.N., Izaguirre, A., Burgos, J.: Labor induction failure prediction based on B-mode ultrasound image processing using multiscale local binary patterns. In: International Conference on Optoelectronics and Image Processing, pp. 25–29 (2016)Google Scholar
  11. 11.
    Obando, V.P., Arana, A.N., Izaguirre, A., Burgos, J.: Labor induction failure prediction using Gabor filterbanks and center symmetric local binary patterns. In: IEEE 37th Central America and Panama Convention, pp. 1–5 (2017)Google Scholar
  12. 12.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • María Inmaculada García Ocaña
    • 1
    • 2
    Email author
  • Karen López-Linares Román
    • 1
    • 2
  • Jorge Burgos San Cristóbal
    • 3
  • Ana del Campo Real
    • 3
  • Iván Macía Oliver
    • 1
    • 2
  1. 1.VicomtechSan SebastiánSpain
  2. 2.Biodonostia Health Research InstituteSan SebastiánSpain
  3. 3.Obstetrics and Gynecology Service, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Osakidetza, UPV/EHUBaracaldoSpain

Personalised recommendations