Advertisement

Estimation of Preterm Birth Markers with U-Net Segmentation Network

  • Tomasz WłodarczykEmail author
  • Szymon Płotka
  • Tomasz Trzciński
  • Przemysław Rokita
  • Nicole Sochacki-Wójcicka
  • Michał Lipa
  • Jakub Wójcicki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11798)

Abstract

Preterm birth is the most common cause of neonatal death. Current diagnostic methods that assess the risk of preterm birth involve the collection of maternal characteristics and transvaginal ultrasound imaging conducted in the first and second trimester of pregnancy. Analysis of the ultrasound data is based on visual inspection of images by gynaecologist, sometimes supported by hand-designed image features such as cervical length. Due to the complexity of this process and its subjective component, approximately 30% of spontaneous preterm deliveries are not correctly predicted. Moreover, 10% of the predicted preterm deliveries are false-positives [1]. In this paper, we address the problem of predicting spontaneous preterm delivery using machine learning. To achieve this goal, we propose to first use a deep neural network architecture for segmenting prenatal ultrasound images and then automatically extract two biophysical ultrasound markers, cervical length (CL) and anterior cervical angle (ACA), from the resulting images. Our method allows to estimate ultrasound markers without human oversight. Furthermore, we show that CL and ACA markers, when combined, allow us to decrease false-negative ratio from 30% to 18%. Finally, contrary to the current approaches to diagnostics methods that rely only on gynaecologist’s expertise, our method introduce objectively obtained results.

Keywords

Preterm birth Segmentation Deep learning 

References

  1. 1.
    Howson, C., Kinney, M., Lawn, J.: March of Dimes, PMNCH, Save the Children, WHO. Born Too Soon: The Global Action Report on Preterm Birth. World Health Organization, Geneva (2012)Google Scholar
  2. 2.
    Barros, F., et al.: Epidemiology and causes of preterm birth. Lancet 371, 75–84 (2008)CrossRefGoogle Scholar
  3. 3.
    Celik, E., et al.: Cervical length and obstetric history predict spontaneous preterm birth: development and validation of a model to provide individualized risk assessment. Ultrasound Obstet. Gynecol. 31, 549–554 (2008)CrossRefGoogle Scholar
  4. 4.
    Arabin, B., et al.: Cervical pessaries for prevention of spontaneous preterm births: past, present and future. Ultrasound Obstet. Gynecol. 44, 390–399 (2013)Google Scholar
  5. 5.
    Berghella, V., et al.: Cerclage for short cervix on ultrasonography: meta-analysis of trials using individual patient-level data. Ultrasound Obstet. Gynecol. 106, 181–189 (2005)CrossRefGoogle Scholar
  6. 6.
    Fonseca, E., et al.: Progesterone and the risk of preterm birth among women with a short cervix. N. Engl. J. Med. 357, 462–469 (2007)CrossRefGoogle Scholar
  7. 7.
    Goya, M., et al.: Cervical pessary in pregnant women with a short cervix (PECEP): an open-label randomised controlled trial. Lancet 379, 1800–1806 (2012)CrossRefGoogle Scholar
  8. 8.
    Myatt, L., et al.: A standardized template for clinical studies in preterm birth. Reprod. Sci. 19, 474–482 (2012)CrossRefGoogle Scholar
  9. 9.
    To, M., et al.: Cervical cerclage for prevention of preterm delivery in women with short cervix. Lancet 364, 1849–1853 (2005)Google Scholar
  10. 10.
    Beta, J., et al.: Prediction of spontaneous preterm delivery from maternal factors, obstetric history and placental perfusion and function at 11–13 weeks. Prenat. Diagn. 31, 75–83 (2011)CrossRefGoogle Scholar
  11. 11.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  12. 12.
    Sochacki-Wojcicka, N., et al.: Anterior cervical angle as a new biophysical ultrasound marker for prediction of spontaneous preterm birth. Ultrasound Obstet. Gynecol. 46, 377–378 (2015)CrossRefGoogle Scholar
  13. 13.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tomasz Włodarczyk
    • 1
    Email author
  • Szymon Płotka
    • 1
    • 5
  • Tomasz Trzciński
    • 1
    • 4
  • Przemysław Rokita
    • 1
  • Nicole Sochacki-Wójcicka
    • 2
    • 3
  • Michał Lipa
    • 2
  • Jakub Wójcicki
    • 2
    • 3
  1. 1.Warsaw University of TechnologyWarsawPoland
  2. 2.Warsaw Medical UniversityWarsawPoland
  3. 3.Ernest Wójcicki Prenatal Medicine FoundationWrocławPoland
  4. 4.TooplooxWrocławPoland
  5. 5.MedApp S.A.BochniaPoland

Personalised recommendations