Advertisement

Determination of Soil Bearing Capacity and Profile Using CAP-SASW Method at Western Malaysian Peninsular

  • A. B. RamliEmail author
  • N. Kasim
  • N. N. Ismail
  • S. L. Ibrahim
  • Nadiah Md Husain
  • W. N. A. W. Azahar
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 53)

Abstract

Bearing capacity is one of an important feature in geotechnical engineering and estimated using in situ conventional method. Inherent problem in the method such as relieving of stress during drilling and testing motivates the use of seismic method to provide supplementary small strain parameters in estimating the bearing capacity. This paper presents a non-invasive method which offers sustainable development by utilizing the propagation of Rayleigh waves and thus minimizing cost in site investigation and construction work. Bearing capacity derived from an equation of hyperbolic shear stress-strain model to evaluate the bearing capacity at some of selected sites at western peninsular Malaysia.

Keywords

Bearing capacity CAP-SASW method 

References

  1. 1.
    Krage CP (2018) Investigation of sample quality and spatial variability for intermediate soils. University of California, DavisGoogle Scholar
  2. 2.
    Noorzad R, Pakniat H (2016) Investigating the effect of sample disturbance, compaction and stabilization on the collapse index of soils. Environ Earth Sci 75(18):1262CrossRefGoogle Scholar
  3. 3.
    Mahvelati S, Kordjazi A, Coe JT (2018) A review of seismic geophysical testing in Iran for building near-surface velocity models. Lead Edge 37(1):8–68CrossRefGoogle Scholar
  4. 4.
    Stokoe KH, Joh SH, Woods RD (2004) Some contributions of in situ geophysical measurements to solving geotechnical engineering problems. In: Proceedings, pp 97–132Google Scholar
  5. 5.
    Joh SH, Kang TH, Jang DW, Lee IW (2005) Evaluation of stiffness profile for a subgrade cross-section by the CAP (Common-Array-Profiling)-SASW technique. J Korean Geotech Soc 21(4):71–81Google Scholar
  6. 6.
    Tamrakar P, Azari H, Yuan D, Nazarian S (2017) Implementation of spectral analysis of surface waves approach for characterization of railway track substructures. Transp Geotech 12:101–111CrossRefGoogle Scholar
  7. 7.
    Jafri NJS, Ab Rahim MA, Zahid MZAM, Bawadi NF, Ahmad MM, Mansor AF, Omar WMSW (2018) Assessment of soil compaction properties based on surface wave techniques. In: E3S Web of conferences, vol 34, p 01002. EDP SciencesCrossRefGoogle Scholar
  8. 8.
    Lin CH, Lin CP, Dai YZ, Chien CJ (2017) Application of surface wave method in assessment of ground modification with improvement columns. J Appl Geophys 14:14–22CrossRefGoogle Scholar
  9. 9.
    Dal Moro G, Keller L, Al-Arifi NS, Moustafa SSR (2016) Shear-wave velocity profiling according to three alternative approaches: a comparative case study. J Appl Geophys 134:112–124CrossRefGoogle Scholar
  10. 10.
    Lu Z, Wilson GV (2017) Imaging a soil fragipan using a high-frequency multi-channel analysis of surface wave method. J Appl Geophys 143:1–8CrossRefGoogle Scholar
  11. 11.
    Bawadi NF (2016) Penilaian Keupayaan Galas Cerucuk Menggunakan Pengukuran Halaju Gelombang Ricih Dan Nisbah Redaman. PhD Thesis, Universiti Kebangsaan MalaysiaGoogle Scholar
  12. 12.
    Tezcan SS, Keceli A, Ozdemir Z (2006) Allowable bearing capacity of shallow foundations based on shear wave velocity. Geotech Geol Eng 24(1):203–218CrossRefGoogle Scholar
  13. 13.
    Tezcan SS, Ozdemir Z (2011) A refined formula for the allowable soil pressure using shear wave velocities. Open Civil Eng J 5:1–8CrossRefGoogle Scholar
  14. 14.
    Keceli A (2012) Soil parameters which can be determined with seismic velocities. Jeofizik 16(1):17–29Google Scholar
  15. 15.
    Atat JG, Akpabio IO, George NJ (2013) Allowable bearing capacity for shallow foundation in Eket local government area, Akwa Ibom state, Southern Nigeria. Int J Geosci 4(10):1491CrossRefGoogle Scholar
  16. 16.
    Shafiqu QSM, Güler E, Edinçliler A (2018) Mechanical parameters and bearing capacity of soils predicted from geophysical data of shear wave velocity. Int J Appl Eng Res 13(2):1075–1094Google Scholar
  17. 17.
    Yusof MF, Khalid MN, Tajudin SA, Madun A, Abidin MH (2017) Correlation of JKR Probe with undrained Shear strength. In: MATEC web of conferences, vol 103, p 07009. EDP SciencesCrossRefGoogle Scholar
  18. 18.
    Jaapar AR, Ahba NA, Hussin A (2002) The occurrence and classification of hard rock body in Putrajaya and its implication to construction activitiesGoogle Scholar
  19. 19.
    Mohamad NO, Razali CE, Hadi AAA, Som PP, Eng BC, Rusli MB, Mohamad FR (2016) Challenges in construction over soft soil-case studies in Malaysia. In: IOP conference series: materials science and engineering, vol 136, no. 1, p 012002). IOP PublishingGoogle Scholar
  20. 20.
    Omar MN, Abbiss CP, Taha MR, Nayan KAM (2011) Prediction of long-term settlement on soft clay using shear wave velocity and damping characteristics. Eng Geol 123(4):259–270CrossRefGoogle Scholar
  21. 21.
    Kudo K, Shima E (1981) Attenuation of shear waves in soil. In: Toksoz MN, Johnston DH (eds) Seismic wave attenuation. Geophysics reprint series no. 2, Society of Exploration Geophysics, Tulsa, Okla, pp 325–338Google Scholar
  22. 22.
    Tonouchi K, Sakayama T, Imai T (1983) S wave velocity and the damping factor. B Int Assoc Eng Geol 26/27:327–333Google Scholar
  23. 23.
    Abbiss CP (1986) The effects of damping on the interpretation of geophysical measurements. Géotechnique 36(4):565–580CrossRefGoogle Scholar
  24. 24.
    Mok YJ, Stokoe KH, Wilson CR (1988) Analysis of downhole seismic data using inverse theory. In: Proceedings of ninth world conference on earthquake engineering, vol III. Tokyo, Japan, pp 65–60Google Scholar
  25. 25.
    Stewart WP, Campanella RG (1992) Practical aspects of in situ measurements of material damping with the seismic cone penetration test. Can Geotech J 30(2):211–219CrossRefGoogle Scholar
  26. 26.
    Foti S (2003) Small-strain stiffness and damping ratio of Pisa clay from surface wave tests. Géotechnique 53(5):455–461CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • A. B. Ramli
    • 1
    Email author
  • N. Kasim
    • 1
  • N. N. Ismail
    • 1
  • S. L. Ibrahim
    • 1
  • Nadiah Md Husain
    • 1
  • W. N. A. W. Azahar
    • 1
  1. 1.Department of Civil EngineeringInternational Islamic University MalaysiaKuala LumpurMalaysia

Personalised recommendations