Advertisement

Metabiology pp 69-95 | Cite as

Non-standard Models and the “Construction” of Life

  • Arturo CarsettiEmail author
Chapter
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 50)

Abstract

If we set ourselves from the point of view of a radical Constructivism, an effective semantic anchorage for an observer system such as the one, for example, represented by the non-trivial machine as imagined by H. von Foerster, can come to be identified only to the extent that the evolving system itself proves able to change the Semantics. This, however, will result in our being able to realize an expression of ourselves as autonomous beings, as subjects, in particular, capable of focusing on the same epistemological conditions relating to our autonomy. A creative autonomy that expresses itself above all in the observer's ability to govern the change taking place. Only the cognitive agent operating in these conditions will actually come to undergo the new embodiment. Here is the passage on one's shoulders to which T. Skolem refers, namely that continuous passage from the first to the second observer that marks the very course of natural evolution.

References

  1. 1.
    Machover, M. (1996). Set theory, logic and their limitations. Cambridge.Google Scholar
  2. 2.
    Wang, H. (1970). Skolem and Gödel. Nordic Journal of Philosophical Logic, 1(2), 41.Google Scholar
  3. 3.
    Skolem, T. (1933). Uber die Unmöglichkeit einer volistandigen Charakterisierung der Zahlenreihe mittels eines endlichen Axiomensystems. Norsk Matematisk Forening, Skrifter, 73–82. Reprinted in  Skolem, T. (1970). Selected Works in Logic. Oslo (pp. 345–354).Google Scholar
  4. 4.
    Skolem, T. (1941). Sur la portée du théorème de Löwenheim-Skolem. In Les Entretiens de Zurich (pp. 25–47), December 6–9, 1938. Reprinted in (Skolem 1970, pp. 455–482). [p. 475].Google Scholar
  5. 5.
    Gödel, K. (1934). Besprechung von “Uber die Unmöglichkeit einer vollstandigen Charakterisierung der Zahlenreihe mittels eines endlichen Axiomensystems. Zentrallblatt fur Mathematik und ihre Grenzgebiete, 2, 3. Reprinted in Gödel, K. (1986). Collected Works. New York. [p. 379].Google Scholar
  6. 6.
    Skolem, T. (1941). Sur la portée du théorème de Löwenheim-Skolem. In Les Entretiens de Zurich (pp. 25–47), December 6–9, 1938. Reprinted in (Skolem 1970, pp. 455–482). [p. 471].Google Scholar
  7. 7.
    Skolem, T. (1941). Sur la portée du théorème de Löwenheim-Skolem. In Les Entretiens de Zurich (pp. 25–47), December 6–9, 1938. Reprinted in (Skolem 1970, pp. 455–82). [p. 471–72].Google Scholar
  8. 8.
    Di Giorgio, N. (2010). Non-Standard Models of Arithmetic: A philosophical and historical perspective (M.Sc. thesis). University of Amsterdam. https://www.illc.uva.nl//MoL-2010-05.text.pdf.
  9. 9.
    Wang, H. (1996). Skolem and Gödel. Nordic Journal of Philosophical Logic, 1(2), 119–132. [p. 122].MathSciNetzbMATHGoogle Scholar
  10. 10.
    Wang, H. (1996). Skolem and Gödel. Nordic Journal of Philosophical Logic, 1(2), 119–132. [p. 122–3].Google Scholar
  11. 11.
    Machover, M. (1996). Set Theory, logic and their limitations. Cambridge. [p. 282].Google Scholar
  12. 12.
    Gitman, V. (2015). An introduction to nonstandard models of arithmetic. In Analysis, logic and physics seminar, April 24. Virginia Commonwealth University. [p. 2].Google Scholar
  13. 13.
    Carnielli, W., & Se Araujo, A. (2012). Non-standard numbers: A semantic obstacle for modelling arithmetical reasoning. Logic Journal of the IGPL, 20(2), 477–485.Google Scholar
  14. 14.
    Hamkins, J. D. (2018). Nonstandard models of arithmetic arise in the complex numbers. http://jdh.hamkind.org/nonstandard-models-of-arihtmetic-arise-in-complex-numbers/.
  15. 15.
    Baez, J. (2018). Nonstandard integers as complex numbers. Azimuth. https://johncarlosbaez.wordpress.com/.../nonstandard-integers-as-complex-numbers/. [p. 1].
  16. 16.
    Baez, J. (2018). “Nonstandard Integers as Complex Numbers”, Azimuth, [https://johncarlosbaez.wordpress.com/.../nonstandard-integers-as-complex-numbers/], [p. 1–2].
  17. 17.
    Paris, P., & Harrington, L. (1977). A mathematical incompleteness in Peano arithmetic. In J. Barwise (Ed.), Handbook for mathematical logic. Amsterdam, Netherlands: North-Holland.Google Scholar
  18. 18.
    Benacerraf, P. (1965). What numbers could not be. The Philosophical Review, 74, 47–73. [p. 50].MathSciNetCrossRefGoogle Scholar
  19. 19.
    Halbach, V., & Horsten, L. (2005). Computational structuralism. Philosophia Mathematica, 13(III). [p. 178].Google Scholar
  20. 20.
    O’Regan, J. K., Myin, E., & Noe, A. (2004). Towards an analytic phenomenology: The concepts of “Bodiliness” and “Grabbiness”. In A. Carsetti (Ed.), Seeing, thinking and knowing. Dordrecht. [p. 104].Google Scholar
  21. 21.
    Quinon, P., & Zdanowski, K. (2006). The intended model of arithmetic. An argument from Tennenbaum’s theorem. http://www.impan.pl/_kz/_les/PQKZTenn.pdf.
  22. 22.
    Lawvere, W. (1969). Diagonal arguments and cartesian closed categories. Lecture Notes in Mathematics, 92, 134–145.Google Scholar
  23. 23.
    Dean, W. (2013). Models and computability. Philosophia Mathematica (III), 22(2). [p. 63].MathSciNetCrossRefGoogle Scholar
  24. 24.
    Dean, W. (2013). Models and Computability. Philosophia Mathematica 22(2): 143–166. [p. 63].MathSciNetCrossRefGoogle Scholar
  25. 25.
    Putnam, H. (1980). Models and reality. The Journal of Symbolic Logic, 45, 464–482. [p. 479].MathSciNetCrossRefGoogle Scholar
  26. 26.
    Quinon, P., & Zdanowski, K. (2006). The intended model of arithmetic. An argument from Tennenbaum’s theorem. http://www.impan.pl/_kz/_les/PQKZTenn.pdf. [p. 2].
  27. 27.
    Carsetti, A. (1990). Algorithmes, complexité et modèles. La Nuova Critica, 15–16: 71–100.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.La Nuova CriticaV. Lariana 7, RomeItaly

Personalised recommendations