Advertisement

Hierarchical Neuro-Game Model of the FANET Based Remote Monitoring System Resources Balancing

  • Vladimir A. SerovEmail author
  • Evgeny M. VoronovEmail author
  • Dmitry A. Kozlov
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 261)

Abstract

The article discusses the basic principles of the methodology for the resource control optimizing of the remote monitoring system based on the FANET (Flying Ad Hoc Network) in real time. The hierarchical game model of optimization of control of system resources in the conditions of uncertainty on the basis of the coordinated stably-effective compromises is developed. The problem of synthesis of game algorithms of load balancing in communication channels based on neural networks of radial basis functions is solved. The developed situational model and neurofeedback algorithms provide structural adaptation of the system to the changing operating conditions and a given level of time delays in communication channels under the conditions of uncertainty of the input data queues.

Keywords

FANET (Flying Ad Hoc Network) Remote monitoring system Unmanned aerial vehicle Neural network control Neural network of radial basis functions Hierarchical game under uncertainty with the right of the first move Coordinated stable-effective compromise Robast quality assurance 

References

  1. 1.
    Bekmezci, I., Sahingos, O., Temel, S.: Flying Ad Hoc networks (FANETs): a survey. Ad Hoc Netw. 11(3), 1254–1270 (2013)CrossRefGoogle Scholar
  2. 2.
    Wang, J., Jiang, C., Han, Z., Ren, Y., Maunder, R., Hanzo, L.: Taking drones to the next level: cooperative distributed unmanned-aerial-vehicular networks for small and mini drones. IEEE Veh. Technol. Mag. 12(3), 73–82 (2017)CrossRefGoogle Scholar
  3. 3.
    Gupta, L., Jain, R., Vaszkun, G.: Survey of important issues in UAV communication networks. IEEE Commun. Surveys Tuts. 18(2), 1123–1152, Second Quart (2016)Google Scholar
  4. 4.
    Sahingoz, O.K.: Networking models in flying Ad Hoc networks (FANETs): concepts and challenges. J. Intell. Robotic Syst. 74(1), 513–527CrossRefGoogle Scholar
  5. 5.
    Kim, D., Lee, J.: Topology construction for flying Ad Hoc networks (FANETs). In: Proceedings of International Conference on ICT Convergence (ICTC), Jeju, South Korea, hh. 153–157 (Oct 2017)Google Scholar
  6. 6.
    Leonov, A.V., Chaplygin, V.A.: Network FANET. Omsk Scientif. Bull. 3(143) (2015)Google Scholar
  7. 7.
    Bekmezci, I., Ermis, M., Kaplan, S.: Connected multi UAV task planning for flying Ad Hoc networks. In: Communications and Networking (BlackSeaCom), 2014 IEEE International Black Sea Conference on IEEE, 2014, C. 28–32.1270 (May 2013)Google Scholar
  8. 8.
    Khan, M.A. et al.: Flying Ad Hoc networks (FANETs): a review of communication architectures, and routing protocols. In: Electrical Engineering and Computing Technologies (INTELLECT), 2017 First International Conference on Latest trends in IEEE, pp. 1–9 (2017)Google Scholar
  9. 9.
    Akkarajitsakul, K., Hossain, E., Niyato, D.: Coalition-based cooperative packet delivery under uncertainty: a dynamic bayesian coalitional game. IEEE Trans. Mobile Comput. 12(2), 371–385 (2013)CrossRefGoogle Scholar
  10. 10.
    Altman, E., Kumar, A., Singh, C., Sundaresan, R.: Spatial SINR games of base station placement and mobile association. IEEE/ACM Trans. Netw. (TON) 20(6), 1856–1869 (2012)CrossRefGoogle Scholar
  11. 11.
    Chuyko, J., Polishchuk, T., Mazalov, V., Gurtov, A.: Wardrop equilibria and price of anarchy in multipath routing games with elastic traffic. Game Theory Appl., pp. 9–19 (2012)Google Scholar
  12. 12.
    Eidenbenz, S., Kumar, A., Zust, S.: Equilibria in topology control games for Ad Hoc networks and generalizations. Mobile Netw. Appl. 11(2), 143–159 (2006)CrossRefGoogle Scholar
  13. 13.
    Han, Z., Niyato, D., Saad, W., Basar, T., Hjerungnes, A.: Game Theory in Wireless and Communication Networks: Theory, Models, and Applications, p. 536. Cambridge University Press (2012)Google Scholar
  14. 14.
    Jaramillo, J.J., Srikant, R.: A game theory based reputation mechanism to incentivizc cooperation in wireless Ad Hoc networks. Ad Hoc Netw. 8(4), 416–429 (2011)CrossRefGoogle Scholar
  15. 15.
    Long, C., Zhang, Q., Li, B., Yang, H., Guan, X.: Non-cooperative power control for wireless Ad Hoc networks with repeated games. IEEE J. Selected Areas Commun. 25(6), 1101–1112 (2007)CrossRefGoogle Scholar
  16. 16.
    Ren, H., Meng, M.Q.-H.: Game-theoretic modeling of joint topology control and power scheduling for wireless heterogeneous sensor networks. IEEE Trans. Autom. Sci. Eng. 6(4), 610–625 (2009)Google Scholar
  17. 17.
    Saad, W., Han, Z., Ba§ar, T., Debbah, M., Hjarungnes, A.: Network formation games among relay stations in next generation wireless networks. IEEE Trans. Commun. 49(9), 2528–2542 (2011)CrossRefGoogle Scholar
  18. 18.
    Shi, H.-Y., Wang, W.-L., Kwok, N.-M., Chen, S.-Y.: Game theory for wireless sensor networks: a survey. Sensors 12(7), 9055–9097 (2012)CrossRefGoogle Scholar
  19. 19.
    Voronov, E.M.: Methods of Optimization of Multiobject Multicriteria Systems Control on the Basis of Stable-Effective Gaming Solutions, 576c. BMSTU, Moscow (2001)Google Scholar
  20. 20.
    Serov, V.A.: Stable-equilibrium control in a hierarchical game model of a structurally complex system under uncertainty. In: Popkov, Y.s.M. (eds.) Proceedings of the Institute of System Analysis RAS. Dynamics of Heterogeneous Systems, vol. 10, 1st edn, pp. 64–76. Komkniga (2006)Google Scholar
  21. 21.
    Vanin, A.V., Voronov, E.M., Serov, V.A.: Development of the method of multicriteria optimization of hierarchical control system based on coordinated stably effective compromises. Vestnik BMSTU. Ser. Nat. Sci. vol. 6, CC. 31–47 (2018).  https://doi.org/10.18698/1812-3368-2018-6-31-47
  22. 22.
    Voronov, E.M., Serov, V.A.: A coordinated stable-effective compromises based methodology of design and control in multi-object systems. In: Gorodetskiy, A., Tarasova, I. (eds.) Smart Electromechanical Systems. Studies in Systems, Decision and Control, vol. 174, pp. 147–157. Springer, ChamGoogle Scholar
  23. 23.
    Serov, V.A.: Genetic computational procedure for finding vector equilibrium by Stackelberg in a hierarchical game model of functioning of a structurally complex system. Intelligent systems (INTELS’2006): Proceedings of the VII International Symposium (Russia, Krasnodar, 26–30 June 2006), pp. 73–74. RUSAKI, Moscow (2006)Google Scholar
  24. 24.
    Serov, V.A: Adaptive fitness functions in evolutionary game control optimization models in structure complicated systems. Vestnik BMSTU. Ser. Instrum. Making 2(113), 111–122 (2017)Google Scholar
  25. 25.
    Serov, V.A.: Genetic algorithms of conflict equilibriums-based multicriteria systems control optimization under uncertainty. Vestnik BMSTU. Ser. Instrum. Making 4(69), 70–80 (2007)Google Scholar
  26. 26.
    Serov, V.A., Voronov, E.M.: Evolutionary algorithms of stable-effective compromises search in multi-object control problems. In: Gorodetskiy, A., Tarasova, I. (eds.) Smart Electromechanical Systems. Studies in Systems, Decision and Control, vol. 174, pp. 19–29. Springer, Cham (2019)Google Scholar
  27. 27.
    Serov, V.A., Babintsev, J.N., Chichurin, A.V.: Neuroevolution technology multi-objective optimization of data flowcontrol in an automated monitoring system in situations of conflict and uncertainty. Neurocomputers: Development and Application 9, 65–71 (2008)Google Scholar
  28. 28.
    Serov, V.A., Babintsev, Yu.N., Kondakov, N.S.: Neurocontrol of multicriteria conflict systems. Monograph, p. 136. MosGU, Moscow (2011)Google Scholar
  29. 29.
    Serov, V.A., Chechurin, A.V.: Control of multilevel systems in real time on the basis of hierarchical neural ensembles. Ind. ACS Controll. 7, 37–41 (2011)Google Scholar
  30. 30.
    Sigov, A.S., Andrianova, E.G., Zhukov, D.O., Zykov, S.V., Tarasov, I.E.: Quantum informatics: review of the main achievements. Russian Technol. J. 7(1), 5–37.  https://doi.org/10.32362/2500-316x-2019-7-1-5-37 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.MIREA—Russian Technological UniversityMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations