Peculiarities of Reducing the Impact of Air Tract on the Accuracy of Positioning Elements of Robotics at Analysis of a Diffraction Pattern of Air Tract Dispersion on a Photo Matrix Field

  • Ivan S. NekrylovEmail author
  • Alexander N. Timofeev
  • Igor A. Konyakhin
  • Valery V. Korotaev
  • Tong Minh Hoa
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 261)


The article deals with theoretical aspects of CMOS sensor cross-links effect as a main drawback of the dispersion method implementation with CMOS video camera and RGB optical radiation source. The paper is concerned with usage of diffraction grating to solve the problem of images overlapping on CMOS sensor with Bayer pattern. It is shown that the diffraction distribution allows to determine the energy centers of different images of the same RGB optical radiation source independently at the same time without overlapping. The text gives mathematical description of how diffraction image is formed and how to use it in dispersion method. The article is of interest to people who deals with optical radiation propagation through the air tract with vertical temperature gradient.


Temperature gradient Dispersion method Spatial position control Positioning of robotics elements Optical-electronic system Diffraction pattern Bayer pattern Overlapping of images 


  1. 1.
    Maletsky, L.P., Sun, J., Morton, N.A.: Accuracy of an optical active-marker system to track the relative motion of rigid bodies. J. Biomech. 40(3), 682–685 (2007)CrossRefGoogle Scholar
  2. 2.
    Wiles, A.D., Thompson, D.G., Frantz, D.D.: Accuracy assessment and interpretation for optical tracking systems. In: Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display, vol. 5367, pp. 421–432. International Society for Optics and Photonics (2004)Google Scholar
  3. 3.
    Schöffel, P.J., et al.: Accuracy of a commercial optical 3D surface imaging system for realignment of patients for radiotherapy of the thorax. Phys. Med. Biol. 52(13), 3949 (2007)CrossRefGoogle Scholar
  4. 4.
    Sun, T., Xing, F., You, Z.: Optical system error analysis and calibration method of high-accuracy star trackers. Sensors 13(4), 4598–4623 (2013)CrossRefGoogle Scholar
  5. 5.
    Nekrylov, I.S. et al.: Choosing parameters of active reference mark optical-electronic systems spatial position control. 20th International Symposium on Precision Engineering Measurements and Instrumentation, vol. 11053, p. 110534H. International Society for Optics and Photonics (2019)Google Scholar
  6. 6.
    Hill, R.J., Clifford, S.F.: Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation. JOSA 68(7), 892–899 (1978)CrossRefGoogle Scholar
  7. 7.
    Beland, R.R.: Propagation through atmospheric optical turbulence. Atmos. Propag. Radiat. 2, 157–232 (1993)Google Scholar
  8. 8.
    Roddier FV (1981) The effects of atmospheric turbulence in optical astronomy. In: Progress in optics, vol. 19, pp. 281–376. ElsevierGoogle Scholar
  9. 9.
    Fried, D.L.: Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. JOSA 56(10), 1372–1379 (1966)CrossRefGoogle Scholar
  10. 10.
    Andrews, L.C., Phillips, R.L.: Laser beam propagation through random media, vol. 152. SPIE press, Bellingham, WA (2005)Google Scholar
  11. 11.
    Schmidt, J.D.: Numerical simulation of optical wave propagation with examples in MATLAB. SPIE, Bellingham, Washington, USA (2010)CrossRefGoogle Scholar
  12. 12.
    Li, C., et al.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Proces. 17(10), 1940–1949 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Richardson, W.H.: Bayesian-based iterative method of image restoration. JoSA 62(1), 55–59 (1972)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bosco, A., Mancuso, M.: Noise filter for Bayer pattern image data : пaт. 7369165 CШA (2008)Google Scholar
  15. 15.
    Lukac, R., Plataniotis, K.N., Hatzinakos, D.: Color image zooming on the Bayer pattern. IEEE Trans. Circ. Syst. Video Tech. 15(11), 1475–1492 (2005)CrossRefGoogle Scholar
  16. 16.
    Nekrylov I. S. et al.: The research of the cross-links effect influence in the color matrix photodetector on an error of the air tract vertical temperature gradient determination. In: Optical Measurement Systems for Industrial Inspection X, vol. 10329, p. 103294L. – International Society for Optics and Photonics (2017)Google Scholar
  17. 17.
    Ma, X., Li, M., He, J.J.: CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array. IEEE Photonics J. 5(2), 6600807 (2013)CrossRefGoogle Scholar
  18. 18.
    Stork, D.G., Gill, P.R.: Lensless ultra-miniature CMOS computational imagers and sensors. Proc. Sensorcomm. 186–190 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ivan S. Nekrylov
    • 1
    Email author
  • Alexander N. Timofeev
    • 1
  • Igor A. Konyakhin
    • 1
  • Valery V. Korotaev
    • 1
  • Tong Minh Hoa
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations