Advertisement

Solid-State Optical Radiation Matrix Receivers in Robots’ Vision Systems

  • Anastasiya Y. Lobanova
  • Victoria A. RyzhovaEmail author
  • Valery V. Korotaev
  • Daria A. DrozdovaEmail author
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 261)

Abstract

Problem statement: Video sensors based on matrix optical receivers are often being used as a part of binocular and multi-angle portable robot’s vision systems. Their main aim is to provide robot a possibility to orient in any environment. Due to complex architecture of matrix receiver’s surface, instrumental errors may occur, which can have a significant impact the measuring result in robot’s orientation system. Thus, systematic research of matrix photodetector’s parameters, which affect the value of electric signal, is significant for the measuring video information schemes of portable robots’ video sensors accuracy analysis. Purpose of research: development of an algorithm for measuring the variation of optical parameters of the photodetector surface. Results: basing on ellipsometry method, algorithm for passing optical rays through the multilayer matrix structure and software for its implementation were developed, the variation of parameters of the solid-state matrix receiver’s surface were calculated. Practical significance: the ellipsometry method can be applied to control the quality of matrix optical receivers. The program, developed during this research, gives a possibility to automate the calculation of the optical parameters of video sensors matrices.

Keywords

Ellipsometry Portable robot Optical matrix receivers Inverse ellipsometry problem Polarization Surface control 

Notes

Acknowledgements

This work was financially supported by Government of the Russian Federation, Grant (08-08).

References

  1. 1.
    Wan, S., Zhang, X., Xu, M., Wang, W., Jiang, X.: Region-adaptive path planning for precision optical polishing with industrial robots. Opt. Express 26(18), 23782–23795 (2018)CrossRefGoogle Scholar
  2. 2.
    Teka, B., Raja, R., Dutta, A.: Learning based end effector tracking control of a mobile manipulator for performing tasks on an uneven terrain. Int. J. Intell. Robot. Appl.  https://doi.org/10.1007/s41315-019-00081-8 (2019)CrossRefGoogle Scholar
  3. 3.
    Xu, J., Chen, R., Liu, S., Guan, Y.: Self-recalibration of a robot-assisted structured-light-based measurement system. Appl. Opt. 56(32), 8857–8865 (2017)CrossRefGoogle Scholar
  4. 4.
    Jiang, G., Luo, M., Lu, L., Bai, K., Abdelaziz, O., Chen, S.: Vision solution for an assisted puncture robotics system positioning. Appl. Opt. 57(28), 8385–8393 (2018)CrossRefGoogle Scholar
  5. 5.
    Wang, D., Liang, H., Zhu, H., Zhang, S.: A Bionic camera-based polarization navigation sensor. Sensors 14, 13006–13023 (2014).  https://doi.org/10.3390/s140713006CrossRefGoogle Scholar
  6. 6.
    Zhao, H., Xu, W.: A bionic polarization navigation sensor and its calibration method. Sensors. 16, 1223 (2016).  https://doi.org/10.3390/s16081223CrossRefGoogle Scholar
  7. 7.
    Michael, F., Thorsten, G., Gene, P.: Very large area CMOS active-pixel sensor for digital radiography. IEEE Trans. Electron Devices. 56(11) (2009)Google Scholar
  8. 8.
    Teyssieux, D., Euphrasie, S., Cretin, B.: MEMS in-plane motion/vibration measurement system based CCD camera. Measurement 44(10), 2205–2216 (2011)CrossRefGoogle Scholar
  9. 9.
    Hill, R.C., Lafortune, S.: Scaling the formal synthesis of supervisory control software for multiple robot systems. In: Conference: 2017 American Control Conference (ACC). p. 3840 (2017).  https://doi.org/10.23919/acc.2017.7963543
  10. 10.
    Gonzalez, A.G., Alves, M.V., Viana, G.S., Carvalho, L.K., Basilio, J.C.: Supervisory control-based navigation architecture: a new framework for autonomous robots in industry environments. Ind. Inf. IEEE Trans. 14(4), 1732–1743 (2018)CrossRefGoogle Scholar
  11. 11.
    Macktoobian, M., Aliyari, M.Sh: Optimal distributed interconnectivity of multi-robot systems by spatially-constrained clustering. J. Adapt. Behav. 25(2), 96 (2017).  https://doi.org/10.1177/1059712317700500CrossRefGoogle Scholar
  12. 12.
    Akimov, Y.K.: Silicon radiation detectors (Review). Instrum. Exp. Tech. 50(1)1–28 (2007), ISSN 0020-4412MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zmuidzinas, J.: Thermal noise and correlations in photon detection. Appl. Opt. 42(25), 4989 (2003)CrossRefGoogle Scholar
  14. 14.
    Wang, D., Zhang, T., Kuang, H.G.: Relationship between the charge-coupled device signal-to-noise ratio and dynamic range with respect to the analog gain. Appl. Opt. 51(29), 7103–7114 (2013)CrossRefGoogle Scholar
  15. 15.
    Chen, L., Zhang, X., Lin, J., Sha, D.: Signal-to-noise ratio evaluation of a CCD camera. Opt. Laser Technol. 41, 574–579 (2009)CrossRefGoogle Scholar
  16. 16.
    Weiwei, F., Yanjun, J., Ligang, C.: The impact of signal–noise ratio on degree of linear polarization measurement. Optik—Int. J. Light Electron Opt. 124(3), 192–194 (2013)CrossRefGoogle Scholar
  17. 17.
    Davenport, J.J., Hodgkinson, J., Saffell, J.R., Tatam, R.P.: Noise analysis for CCD-based ultraviolet and visible spectrophotometry. Appl. Opt. 54, 8135–8144 (2015)CrossRefGoogle Scholar
  18. 18.
    Liu, H., Zhang, J.: Dark current and noise analyses of quantum dot infrared photodetectors. Appl. Opt. 51, 2767–2771 (2012)CrossRefGoogle Scholar
  19. 19.
    Yang D.X.D., Gamal, A.E.: Comparative analysis of SNR for image sensors with enhanced dynamic range (1999). http://isl.stanford.edu/groups/elgamal/abbas_publications/C068.pdf
  20. 20.
    Nam, H., Park, J.L., Choi, J.S., Lee, J.G.: The optimization of zero-spaced microlenses for 2.2um pixel CMOS image sensor. In: Proceeding of SPIE 6520, Optical Microlithography XX (2007)Google Scholar
  21. 21.
    Nussbaum, Ph, Völkel, R., Herzig, H.P., Eisner, M., Haselbeck, S.: Design, fabrication and testing of microlens arrays for sensors and microsystems. Pure Appl. Opt. 6, 617–636 (1997)CrossRefGoogle Scholar
  22. 22.
    Huber, M., Pauluhn, A., Culhane, J.: CCD and CMOS sensors. Observing Photons in Space ISSI Scientific Reports Series, ESA/ISSI, pp. 391–408 (2010)Google Scholar
  23. 23.
    Berger, C.R., Benlachtar, Y., Killey, R.I., Milder, P.A.: Theoretical and experimental evaluation of clipping and quantization noise for optical OFDM. Opt. Express 19, 17713–17728 (2011)CrossRefGoogle Scholar
  24. 24.
    Konnik, M.V., Manykin, E.A., Starikov, S.N.: Optical-digital correlator with increased dynamic range using spatially varying pixels exposure technique. Opt. Mem. Neural Net. Inf. Opt. 18(2), 61–71 (2009)CrossRefGoogle Scholar
  25. 25.
    Konnik, M.V., Welsh, J.S.: On numerical simulation of high-speed CCD/CMOS-based wavefront sensors in adaptive optics. SPIE Optical Engineering+Applications (2011)Google Scholar
  26. 26.
    Ding, R., Venetsanopoulos, A.N.: Generalized homomorphic and adaptive order statistic filters for the removal of impulsive and signal-dependent noise. IEEE Trans. Circuits Syst. 34(8), 948–955 (1987)CrossRefGoogle Scholar
  27. 27.
    Chen, Z., Wang, X., Liang, R.: Calibration method of microgrid polarimeters with image interpolation. Appl. Opt. 54, 995–1001 (2015)CrossRefGoogle Scholar
  28. 28.
    Meza, P., Machuca, G., Torres, S., Martin, C.S., Vera, E.: Simultaneous digital super-resolution and nonuniformity correction for infrared imaging systems. Appl. Opt. 54, 6508–6515 (2015)CrossRefGoogle Scholar
  29. 29.
    Liu, G., Tan, O., Gao, S.S., Pechauer, A.D., Lee, B., Lu, C.D., Fujimoto, J.G., Huang, D.: Postprocessing algorithms to minimize fixed-pattern artifact and reduce trigger jitter in swept source optical coherence tomography. Opt. Express 23, 9824–9834 (2015)CrossRefGoogle Scholar
  30. 30.
    Tyo, J.S.: Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error. J. Appl. Opt. 41, 619–630 (2002)CrossRefGoogle Scholar
  31. 31.
    Feng, W., Chen, L.: Relative orientation accuracy analysis of the polarizers in a polarization CCD camera. Optik 121, 1401–1404 (2010)CrossRefGoogle Scholar
  32. 32.
    Chipman, R.A.: Polarization ray tracing. In: Proceeding of SPIE 0766, Recent Trends in Optical Systems Design and Computer Lens Design Workshop, 10 June 1987.  https://doi.org/10.1117/12.940204
  33. 33.
    Chipman, R.A.: Polarization analysis of optical systems. Opt. Eng. 28(2) (1989)Google Scholar
  34. 34.
    Korotaev, V.V.: Computing the polarization of optical radiation crossing mirror and prism systems. [Article@METOD RASCHETA SOSTOYANIYA POLYARIZATSII OPTICHESKOGO IZLUCHENIYA PRI PROKHOZHDENII ZERKAL’NYKH I PRIZMENNYKH SISTEM.] (1979) Izvestia vyssih ucebnyh zavedenij. Priborostroenie, 22(4), 77–82Google Scholar
  35. 35.
    Irene, E.A., Tompkins, H.G. (eds.): Handbook of ellipsometry. William Andrew Publisher (2005)Google Scholar
  36. 36.
    Fujiwara, H.: Spectroscopic ellipsometry: principles and applications. Wiley, London (2007)Google Scholar
  37. 37.
    Tikhiii, A.A., Gritskikh, V.A., Kara-Murza, S.V., Nikolaenko, YuM, Zhikharev, I.V.: Features of interpreting ellipsometric measurement results. Opt. Spectrosc. 112(2), 300–304 (2012)CrossRefGoogle Scholar
  38. 38.
    Azzam, R.M.A.: Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal. Opt. Lett. 2(6), 148–150 (1978)CrossRefGoogle Scholar
  39. 39.
    Chipman, R.A.: Polarization considerations for Optical Systems. Opt. Eng. 28(2), 85 (1989)MathSciNetGoogle Scholar
  40. 40.
    Atkinson, Gary A., Ernst, Jürgen D.: High-sensitivity analysis of polarization by surface reflection. Mach. Vis. Appl. 29(7), 1171–1189 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.ITMO UniversitySaint PetersburgRussia

Personalised recommendations