Parametric Synthesis Method of PID Controllers for High-Order Control Systems

  • Andrey ProkopevEmail author
  • Zhasurbek Nabizhanov
  • Vladimir Ivanchura
  • Rurik Emelyanov
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 260)


A method for designing a model of PID controllers for high-order systems based on the modal method for linear systems is proposed taking into account the assignment of the roots of the characteristic polynomial of the corrected automatic feedback control system. From the stability condition of the system, the coefficients of the characteristic polynomial must be positive. It is provided to set the test conditions of the positive values of the coefficients of the PID regulators. The calculation of the controller parameters is performed according to transition characteristics of the system. Functionality test of method has provided by the example of synthesis of PID controllers parameters of the control system of third order object.


Control Parametric synthesis PID controller A polynomial of the system The desired polynomial Transient response 


  1. 1.
    Prokopev, A.P., Ivanchura, V.I., Emelianov, R.T., Palchikov, P.A.: Implementation of the concept of automation and intellectualization of management of road construction processes. Vestnik MGSU. 2018, 13(1) (112), 61–70 (2018)Google Scholar
  2. 2.
    Prokopev, A.P., Ivanchura, V.I., Emelyanov, R.T.: Synthesis PID controller for objects second order with regard to the location poles. Zhurnal SFU. Tech. Technol. 9(1), 50–60. (2016)
  3. 3.
    Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. Am. Soc. Mech. Eng. 64, 759–768 (1942)Google Scholar
  4. 4.
    Astrom, K.J., Hagglund, T.: Advanced PID Control. Research Triangle Park, North Carolina: The Instrumentation, Systems, and Automation Society, 354 p (2006)Google Scholar
  5. 5.
    Vadutov, O.S.: Design of PID controller for delayed systems using optimization technique under pole assignment constraints. News of Tomsk Polytechnic University. Inf. Technol. 325(5), 16–22 (2014)Google Scholar
  6. 6.
    Filips, Ch., Kharbor, R.: Feedback control systems. Moscow, Basic knowledge laboratory Publ., 2001, 616 p (2001)Google Scholar
  7. 7.
    Voronov, A.A.: Fundamentals of the Theory of Automatic Control. Automatic control of continuous linear systems. Energiya Publ., Moscow, 309, p (1980)Google Scholar
  8. 8.
    Lukas, V.A.: Automatic Control Theory. Nedra Publ., Moscow, 416 p (1990)Google Scholar
  9. 9.
    O’Dwyer, A.: Handbook of PI and PID Controller Tuning Rules. Imperial College Press, London, 564 p (2006)Google Scholar
  10. 10.
    O’Dwyer, A.: Handbook of PI and PID controller tuning rules. Imperial College Press, London, 623 p (2009)Google Scholar
  11. 11.
    Zamyatin, D.V., Lovchikov, A.N.: The time optimal systems synthesis methodic. Vestnik SibGAU, 4, 28–30 (2005)Google Scholar
  12. 12.
    Besekersky, V.A., Popov, E.P.: Theory of automatic control systems. Moscow, Publishing House “Nauka”, 768 p (1975)Google Scholar
  13. 13.
    Zamyatin, D.V., Lovchikov, A.N.: Correctional unit parameters obtaining for time optimal four order system. Vestnik SibGAU, 4(11), 18–20 (2006)Google Scholar
  14. 14.
    Zamyatin, D.V., Lovchikov, A.N.: Synthesis of time optimal systems of high order. Vestnik SibGAU, 2(48), 24–28 (2013)Google Scholar
  15. 15.
    Ivanchura, V.I., Prokopiev, A.P.: Optimization of a tracker system of automatic control. Vestnik SibGAU, 5(38), 44–49 (2011)Google Scholar
  16. 16.
    Prokopev, A.P., Ivanchura, V.I., Emelyanov, R.T.: Features of the synthesis of controller for nonlinear system control. Mathematical methods in engineering and technology. MMTT-27: XXVII international scientific conference: proceedings. Section 2. The Ministry of education and science of the Russian Federation, Tambov state technical. University [etc.]. Tambov: [b. I.], 2014 (2014)Google Scholar
  17. 17.
    Prokopev A.P., Ivanchura V.I.: Features of the synthesis of controller electro-hydraulic control system XII All-Russia meeting on control problems VCPU-2014. Moscow, June 16–19, 2014: Proceedings. Moscow, Institute of control them. V.A. Trapeznikov Academy of Sciences, 2014, pp. 307–317 (2014)Google Scholar
  18. 18.
    Prokopev, A.P., Ivanchura, V.I., Emelyanov R.T.: Identification of nonlinear control systems with the PID control, SICPRO’15, Moscow, pp. 387–397; (2015)
  19. 19.
    Prokopiev, A.P., Ivanchura, V.I., Emelianov, R.T., Scurihin, L.V.: The technique of synthesis of regulators for objects of the second order. Vestnik SibGAU, 17(3), 618–624 (2016)Google Scholar
  20. 20.
    Efimov, S.V., Zamyatin, S.V., Gayvoronskiy, S.A.: Synthesis of the PID controller with respect to the location of zeros and poles of the system of automatic control. News of Tomsk Polytechnic University, 317(5), 102–107 (2010)Google Scholar
  21. 21.
    Efimov, S.V., Gayvoronskiy, S.A., Zamyatin, S.V.: Root tasks of analysis and synthesis and synthesis of automatic control systems. News Tomsk. Polytech. Univ. 316(5), 16–20 (2010)Google Scholar
  22. 22.
    Uderman, E.G.: Root Locus Method in the Theory of Automatic Systems. Gosenergoizdat Publ., Moscow-Leningrad 112 p (1963)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations