Efficient Computational Procedure for the Alternance Method of Optimizing the Temperature Regimes of Structures of Autonomous Objects

  • Mikhail Yu. LivshitsEmail author
  • A. V. Nenashev
  • B. B. Borodulin
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 260)


The method of increasing the efficiency of the computational procedure for determining an optimal control of the temperature field of load-bearing structures of autonomous objects is proposed. Optimization of temperature distributions using controlled heat sources ensures the reduction of the temperature component of the measurement information error, which comes from heat-releasing information measuring systems placed on the structure. As an example, a supporting structure in the form of a rectangular isotropic prism is analyzed. The computational procedure uses a finite element mathematical model of the optimization object in the ANSYS software environment.


Alternative optimization method Optimal control Computational procedure Finite element model 



The work was supported by the Russian Foundation for Basic Research projects No. 17-08-00593.


  1. 1.
    Livshits, M., Derevyanov, M., Kopytin, S.: Distributed control of temperature regimes of structural elements of autonomous objects. Materials of the XIV Minsk International Forum on Heat and Mass Transfer, Minsk, V. 1. Part 1. pp. 719–722. [in Russian] (2012)Google Scholar
  2. 2.
    Rapoport, E.: Alternance Method in Applied Optimization Problems. Moscow. Nauka, 2000, 335 p. [in Russian] (2000)Google Scholar
  3. 3.
    Livshitc, M., Sizikov, A.: Multi-criteria optimization of refinery. In: EPJ Web of Conferences. Thermophysical Basis of Energy Technologies 2015. vol. 110. (2016)
  4. 4.
    Borodulin, B., Livshits, M.: Optimal control of temperature modes of the instrumental constructions of autonomous objects. In: EPJ Web of Conferences. Volume 110, Thermophysical Basis of Energy Technologies (2016)Google Scholar
  5. 5.
    Borodulin, B., Livshits M., Korshikov S.: Optimization of temperature distributions in critical cross-sections of load-bearing structures of measurement optical systems of autonomous objects. MATEC Web of Conferences. Volume 92, Thermophysical Basis of Energy Technologies (TBET-2016) Tomsk, Russia, October 26–28 (2016)Google Scholar
  6. 6.
    Butkovskii, A.: Theory of Optimal Control of Distributed-Parameter Systems. Moscow: Nauka, 1965, 474 p. [in Russian] (1965)Google Scholar
  7. 7.
    Lions, J.: Control of Distributed Singular Systems. Gauthier-Villars, Paris, 1985. 552 p. (1985)Google Scholar
  8. 8.
    Warga, J.: Optimal Control of Differential and Functional Equations. Academic Press, New York, London, 1972. xiii + 531 p. (1972)Google Scholar
  9. 9.
    Di Loreto, M., Damak, S., Eberard, D., Brun, X.: Approximation of linear distributed parameter systems by delay systems. Automatica, pp. 162–68. (2016)
  10. 10.
    Felgenhauer, U., Jongen, H.Th., Twilt, F., Weber, G.: Semi-infinite optimization: structure and stability of the feasible set. J. Optim. Theory Appl., 3, 529–452. (1992)Google Scholar
  11. 11.
    Rapoport, E.Y.: Optimal Control of Distributed-Parameter Systems. Moscow: Vysshaya Shkola, 2009, 677 p. [in Russian] (2009)Google Scholar
  12. 12.
    Pleshivtseva, Y., Rapoport, E.: Parametric optimization of systems with distributed parameters in problems with mixed constraints on the final states of the object of control. J. Comput. Syst. Sci. Int. 57, 723 (2018). Scholar
  13. 13.
    Rapoport, E., Pleshivtseva, Y.: Optimal control of nonlinear objects of engineering thermophysics. Optoelectron. Instrument. Proc. 48, 429 (2012). Scholar
  14. 14.
    Chichinadze, V.: Solving non-convex nonlinear optimization problems. Nauka, Moscow 1983, 256 p. [in Russian] (1983)Google Scholar
  15. 15.
    Gill, F., Murray, W., Wright, M.: Practical optimization. Academic Press, New York, 1981. 509 pp. (1981)Google Scholar
  16. 16.
    Li, R., Liu, W., Ma, H., Tang, T.: Adaptive finite-element approximation for distributed elliptic optimal control problems. SIAM J. Contr. Optim., 4, 1244–1265 (2003)Google Scholar
  17. 17.
    Murat, F., Tartar, L.: On the control of the coefficients in partial equations. SIAM J. Contr. Optim., 4, 1244–1265 (2003)Google Scholar
  18. 18.
    Lian, T., Fan, Z., Li, G.: Lagrange optimal controls and time optimal controls for composite fractional relaxation systems. Adv Differ Equ. 1, 233. (2017)
  19. 19.
    Felgenhauer, U.: Structural properties and approximation of optimal controls. Nonlinear Anal. 3, 1869–1880 (2001)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Buttazzo, G., Kogut, P.: Weak optimal controls in coefficients for linear elliptic problems. Rev. Mat. Complut. 24, 83–94 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Samara State Technical UniversitySamaraRussia

Personalised recommendations