Advertisement

Adaptive-Robust Control of Technological Processes with Delay on Control

  • Ivan V. Gogol
  • Olga A. RemizovaEmail author
  • Vladislav V. Syrokvashin
  • Aleksandr L. Fokin
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 260)

Abstract

A method for the synthesis of adaptive systems is proposed, which ensures the robustness of the system with respect to the delay, technological objects with a delay in control in the presence of uncertainty in setting the latency and time-varying coefficients of the model of the linear inertial part changing in time, within a certain range of normal operation, arbitrary to the law. Adaptive identification type systems and direct adaptive control systems are considered. The basis for the synthesis of the main control loop of the control system is the method for determining the tuning parameters of the traditional laws of regulation (I, PI, PID). As the main contour, used a system, which is robust in relation to the change in the magnitude of the delay. The chapter presents an identification approach and direct adaptive control.

Keywords

Linear SISO objects Robust control systems PID control laws Predictor Disturbing influence Parametric uncertainty 

References

  1. 1.
    Mahmoodabadi, M., Taherkhorsandi, M., Talebipour, M., Castillo-Villar, K.: Adaptive robust PID control subject to supervisory decoupled sliding mode control based upon genetic algorithm optimization. Trans. Inst. Measur. Control 37(4), 505–514 (2015)CrossRefGoogle Scholar
  2. 2.
    Aldemir, A.: PID controller tuning based on phase margin (PM) for wireless temperature control. Wirel. Pers. Commun. 103(3), 2621–2632 (2018)CrossRefGoogle Scholar
  3. 3.
    Sato, T., Tajika, H., Konishi, Y.: Adaptive PID control system with assigned robust stability. IEEJ Trans. Electr. Electron. Eng. 13(8), 1169–11181 (2018)CrossRefGoogle Scholar
  4. 4.
    Suganya, S.: Design of PID controller for chemical process-heuristic algorithm approach. In: Proceedings of Third International Conference on Science Technology Engineering & Management (ICONSTEM) (2017)Google Scholar
  5. 5.
    Bensafia, Y.: Robust fractionalized PID controller design using the sub-optimal approximation of FOTF. In: Bensafia, Y. (ed.) Proceedings of 6th International Conference on Systems and Control (ICSC) (2017)Google Scholar
  6. 6.
    Pyrkin, A.A., et al.: Compensation of polyharmonic perturbations acting on the state and output of a linear object with a delay in the control channel. Avtomatika i telemehanika 12, 43–64 (2015) (in Russian)Google Scholar
  7. 7.
    Paramonov, A.V., Gerasimov, D.N., Nikiforov, V.O.: Synthesis of an adaptive parameter tuning algorithm with improved convergence for a linear dynamic error model. Izvestija vysshih uchebnyh zavedenij. Priborostroenie 60(9), 818–825 (2017) (in Russian)Google Scholar
  8. 8.
    Cykunov, A.M.: Robust Control with Disturbance Compensation, 300 p. M.:Fizmatlit (2012) (in Russian)Google Scholar
  9. 9.
    Vilanova, R., Arrieta, O.: Robust PI/PID controllers for load disturbance based on direct synthesis. ISA Trans. 81, 177–196 (2018)Google Scholar
  10. 10.
    Nobuyama, E., Kami, Y.: Robust PID controller design for both delay-free and time-delay systems. IFAC Papersonline 51(4), 930–935 (2018)Google Scholar
  11. 11.
    Parsheva, E.A., Tsykunov, A.M.: Adaptive decentralized control of multivariable objects. Autom. Remote Control 62(2), 290–330 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Krstic, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems, p. 466. Birkhauser, Springer (2009)Google Scholar
  13. 13.
    Furtat, I.B., Tsykunov, A.M.: Adaptive control of plants of unknown relative degree. Autom. Remote Control 71(6), 1076–1084 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Denisenko V.V.: Raznovidnosti PID - reguljatorov [Varieties of PID—regulators]. Avtomatizacija v pro-myshlennosti 6, 45–50 (2007)Google Scholar
  15. 15.
    Fokin, A.L.L.: Synthesis of robust process control systems with standard controllers. Izv. SPbGTI(TU) 27, 101–106 (in Russian)Google Scholar
  16. 16.
    Remizova, O.A., Syrokvashin, V.V., Fokin, A.L.: Synthesis of robust control systems with standard controllers. Izv. vuzov. Priborostroenie. 58(12), 12–18 (2015) (in Russian)Google Scholar
  17. 17.
    Gogol, I.V., Remizova, O.A., Syrokvashin, V.V., Fokin, A.L.: Synthesis of robust regulators to control technological processes in the class of traditional laws of regulation. Izv. SPbGTI(TU) 44, 98–105 (2018) (in Russian)Google Scholar
  18. 18.
    Jakovis, L.M.: Simple ways to calculate typical regulators for complex industrial automation objects. Avtomatizacija v promyshlennosti 6, 51–56 (2007) (in Russian)Google Scholar
  19. 19.
    Kim, D.P.: Multidimensional, Nonlinear, Optimal and Adaptive Systems, 400 p. M.:Fizmatlit (2007) (in Russian)Google Scholar
  20. 20.
    Aranovskiy, S., Bobtsov, A., Ortega, R., Pyrkin, A.: Improved transients in multiple frequencies estimation via dynamic regressor extension and mixing. In: 12th IFAC International Workshop on Adaptation and Learning in Control and Signal Processing, vol. 49, no. 13, pp. 99–104 (2016)Google Scholar
  21. 21.
    Andrievskij, B.R., Bobcov, A.A., Fradkov, A.L.: Methods of Analysis and Synthesis of Nonlinear Control Systems, 336 p. M. Izhevsk: Institut komp’juternyh issledovanij (2018) (in Russian)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ivan V. Gogol
    • 1
  • Olga A. Remizova
    • 1
    Email author
  • Vladislav V. Syrokvashin
    • 1
  • Aleksandr L. Fokin
    • 1
  1. 1.Saint-Petersburg State Institute of TechnologySaint-PetersburgRussia

Personalised recommendations