Residual Sparse Autoencoders for Unsupervised Feature Learning and Its Application to HEp-2 Cell Staining Pattern Recognition

  • Xian-Hua HanEmail author
  • Yen-Wei Chen
Part of the Intelligent Systems Reference Library book series (ISRL, volume 171)


Self-taught learning aims at obtaining compact and latent representations from data them-selves without previously manual labeling, which would be time-consuming and laborious. This study proposes a novel self-taught learning for more accurately reconstructing the raw data based on the sparse autoencoder. It is well known that autoencoder is able to learn latent features via setting the target values to be equal to the input data, and can be stacked for pursuing high-level feature learning. Motivated by the natural sparsity of data representation, sparsity has been imposed on the hidden layer responses of autoencoder for more effective feature learning. Although the conventional autoencoder-based feature learning aims at obtaining the latent representation via minimizing the reconstruction error of the input data, it is unavoidable to produce reconstruction residual error of the input data and thus some tiny structures are unable to be represented, which may be essential information for fine-grained image task such as medical image analysis. Even with the multiple-layer stacking for high-level feature pursuing in autoencoder-based learning strategy, the lost tiny structure in the former layers cannot be recovered evermore. Therefore, this study proposes a residual sparse autoencoder for learning the latent feature representation of more tiny structures in the raw input data. With the unavoidably generated reconstruction residual error, we exploit another sparse autoencoder to pursuing the latent feature of the residual tiny structures and this self-taught learning process can continue until the representation residual error is enough small. We evaluate the proposed residual sparse autoencoding for self-taught learning the latent representations of HEp-2 cell image, and prove that promising performance for staining pattern recognition can be achieved compared with the conventional sparse autoencoder and the-state-of-the-art methods.



This work was supported in part by the Grant-in Aid for Scientific Research from the Japanese MEXT.


  1. 1.
    Conrad, K., Schoessler, W., Hiepe, F., Fritzler, M.J.: Autoantibodies in Systemic Autoimmune Diseases. Pabst Science Publishers, Lengerich (2002)Google Scholar
  2. 2.
    Conrad, K., Humbel, R.L., Meurer, M., Shoenfeld, Y.: Autoantigens and Autoantibodies: Diagnostic Tools and Clues to Understanding Autoimmunity. Pabst Science Publishers, Lengerich (2000)Google Scholar
  3. 3.
    Foggia, P., Percannella, G., Soda, P., Vento, M.: Benchmarking HEp-2 cells classification methods. IEEE Trans. Med. Imaging 32(10), 1878–1889 (2013)CrossRefGoogle Scholar
  4. 4.
    Hiemann, R., Hilger, N., Sack, U., Weigert, M.: Objective quality evaluation of fluorescence images to optimize automatic image acquisition. Cytom. Part A 69(3), 182–184 (2006)CrossRefGoogle Scholar
  5. 5.
    Soda, P., Rigon, A., Afeltra, A., Iannello, G.: Automatic acquisition of immunofluorescence images: algorithms and evaluation. In: 19th IEEE International Symposium on Computer Based Medical Systems, pp. 386-390 (2006)Google Scholar
  6. 6.
    Huang, Y.L., Chung, C.W., Hsieh, T.Y., Jao, Y.L.: Outline detection for the HEp-2 cells in indirect immunofluorescence images using watershed segmentation. In: IEEE International Conference on Sensor Networks, Ubiquitous and Trustworthy Computing, pp. 423-427 (2008)Google Scholar
  7. 7.
    Huang, Y.L., Jao, Y.L., Hsieh, T.Y., Chung, C.W.: Adaptive automatic segmentation of HEp-2 cells in indirect immunofluorescence images. IEEE International Conference on Sensor Networks, Ubiquitous and Trustworthy Computing, pp. 418-422 (2008)Google Scholar
  8. 8.
    Bach, F.R., Jordan, M.I.: Learning spectral clustering, with application to speech separation. J. Mach. Learn. Res. 7, 1963–2001 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Banfield, J.D., Raftery, A.E.: Model-based Gaussian and non-Gaussian clustering. Biometrics 49, 803–821 (1993)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)CrossRefGoogle Scholar
  11. 11.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm (with discussion). JRSS-B 39, 1–38 (1977)zbMATHGoogle Scholar
  12. 12.
    Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and it oracle properties. JASA 96, 1348–1360 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fraley, C., Raftery, A.E.: MCLUST version 3 for R: normal mixture modeling and model-based clustering. Technical Report no. 504, Department of Statistics, University of Washington (2006)Google Scholar
  14. 14.
    Han, X.-H., Chen, Y.-W., Nakao, Z.: An ICA-Based Method for Poisson Noise Reduction. Lecture Notes in Artificial Intelligence, vol. 2773, pp. 1449–1454. Springer, Berlin (2003)Google Scholar
  15. 15.
    Han, X.-H., Nakao, Z., Chen, Y.-W.: An ICA-domain shrinkage based Poisson-noise reduction algorithm and its application to Penumbral imaging. IEICE Trans. Inf. Syst. E88-D(4), 750–757 (2005)CrossRefGoogle Scholar
  16. 16.
    Elad, M., Aharon, M.: Image denoising via learned dictionaries and sparse representation. In: CVPR 06 (2006)Google Scholar
  17. 17.
    Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for l1-minimization: methodology and convergence. SIAM J. Optim. 19, 1107 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. JMLR 5, 1457–1469 (2004)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kavukcuoglu, K., Ranzato, M.A. LeCun, Y.: Fast inference in sparse coding algorithms with applications to object recognition, Technical Report CBLL-TR-2008-12-01. Computational and Biological Learning Lab, Courant Institute, NYU (2008)Google Scholar
  20. 20.
    Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: NIPS 06 (2006)Google Scholar
  21. 21.
    Lee, H., Chaitanya, E., Ng, A. Y.: Sparse deep belief net model for visual area v2. In: Advances in Neural Information Processing Systems (2007)Google Scholar
  22. 22.
    Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: International Conference on Machine Learning. New York (2009)Google Scholar
  23. 23.
    Li, Y., Osher, S.: Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm. Inverse Probl. Imaging 3(3), 487–503 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Image Process. 17(1), 53–69 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: ICML09 (2009)Google Scholar
  26. 26.
    Aljalbout, E., Golkov, V., Siddiqui, Y., Cremers, D.: Clustering with deep learning: taxonomy and new methods (2018). arXiv preprint arXiv:1801.07648
  27. 27.
    Chen, D., Lv, J., Yi, Z.: Unsupervised multi-manifold clustering by learning deep representation. In: Workshops at the 31th AAAI Conference on Artificial Intelligence (AAAI), pp. 385-391 (2017)Google Scholar
  28. 28.
    Chen, G.: Deep learning with nonparametric clustering (2015). arXiv preprint arXiv:1501.03084
  29. 29.
    Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 215–223 (2011)Google Scholar
  30. 30.
    Dizaji, K.G., Herandi, A., Huang, H.: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization (2017). arXiv preprint arXiv:1704.06327
  31. 31.
    Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430 (2015)Google Scholar
  32. 32.
    J’egou, H., Douze, M., Schmid, C.: Packing bag-of-features. In: Proceedings of the 12th IEEE International Conference Computer Vision. Kyoto, Japan, pp. 2357–2364 (2009)Google Scholar
  33. 33.
    Jégou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. Int. J. Comput. Vis. 87(3), 316–336 (2010)CrossRefGoogle Scholar
  34. 34.
    Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the IEEE International Conference on Computer Vision Pattern Recognition, pp. 505–513 (2004)Google Scholar
  35. 35.
    Kertesz, C.: Texture-based foreground detection. Int. J. Signal Process. Image Process. Pattern Recognit. 4(4), 51–62 (2011)Google Scholar
  36. 36.
    Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1265–1278 (2005)CrossRefGoogle Scholar
  37. 37.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE Computer Society Conference on Computer Vision Pattern Recognition, pp. 2169–2178 (2006)Google Scholar
  38. 38.
    Liu, L., Wang, L., Liu, X.: In defense of soft-assignment coding. In: Proceedings of the International Conference on Computer Vision, pp. 2486–2493. Barcelona, Spain (2011)Google Scholar
  39. 39.
    Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, pp. 1150–1157. Kerkyra, Greece (1999)Google Scholar
  40. 40.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  41. 41.
    Huang, Y.-L., Chung, C.-W., Hsieh, T.-Y., Jao, Y.-L.: Outline detection for the HEp- 2 cells in indirect immunofluorescence images using watershed segmentation. In: IEEE International Conference on Sensor Networks, Ubiquitous and Trustworthy Computing, pp. 423–427 (2008)Google Scholar
  42. 42.
    Perner, P., Perner, H., Muller, B.: Mining knowledge for HEp-2 cell image classification. J. Artif. Intell. Med. 26, 161–173 (2002)CrossRefGoogle Scholar
  43. 43.
    Soda, P., Iannello, G., Vento, M.: A multiple experts system for classifying fluorescence intensity in antinuclear autoantibodies analysis. Pattern Anal. Appl. 12(3), 215–226 (2009)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Hiemann, R., Buttner, T., Krieger, T., Roggenbuck, D., Sack, U., Conrad, K.: Challenges of automated screening and differentiation of non-organ specific autoantibodies on hep-2 cells. Autoimmun. Rev. 9(1), 17–22 (2009)CrossRefGoogle Scholar
  45. 45.
    Hiemann, R., Buttner, T., Krieger, T., Roggenbuck, D., Sack, U., Conrad, K.: Automatic analysis of immunofluorescence patterns of HEp-2 cells. Ann. N. Y. Acad. Sci. 1109(1), 358–371 (2007)CrossRefGoogle Scholar
  46. 46.
    Soda, P., Iannello, G.: Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis. IEEE Trans. Inf. Technol. Biomed. 13(3), 322–329 (2009)CrossRefGoogle Scholar
  47. 47.
    Han, X.-H., Chen, Y.-W., Gang, X.: Integration of spatial and orientation contexts in local ternary patterns for HEp-2 cell classification. Pattern Recognit. Lett. 82, 23–27 (2016)CrossRefGoogle Scholar
  48. 48.
    Han, X.-H., Chen, Y.-W.: HEp-2 staining pattern recognition using stacked fisher network for encoding weber local descriptor. Xian-Hua Han and Yen-Wei Chen, Pattern Recognition 63, 542–550 (2017)Google Scholar
  49. 49.
    Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science (2006)Google Scholar
  50. 50.
    Center for Disease Control: Quality assurance for the indirect immunofluorescence test for autoantibodies to nuclear antigen (IF-ANA): approved guideline. NCCLS I/LA2-A 16(11) (1996)Google Scholar
  51. 51.
    Rigon, A., Soda, P., Zennaro, D., Iannello, G., Afeltra, A.: Indirect immunofluorescence in autoimmune diseases: assessment of digital images for diagnostic purpose. Cytom. B (Clin. Cytom.) 72(3), 472–477 (2007)CrossRefGoogle Scholar
  52. 52.
    Agrawal, P., Vatsa, M., Singh, R.: Hep-2 cell image classification: a comparative analysi. In: Machine Learning in Medical Imaging. Lecture Notes in Computer Science, pp. 195–202 (2013)CrossRefGoogle Scholar
  53. 53.
    Manivannan, S., Li, W., Akbar, S., Wang, R., Zhang, J., McKenna, S.J.: An automated pattern recognition system for classifying indirect immunofluorescence images of hep-2 cells and specimens. Pattern Recognit. 12–26 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Graduate School of Science and Technology for InnovationYamaguchi UniversityYamaguchi CityJapan
  2. 2.Ritsumeikan UniversityKusatsuJapan
  3. 3.College of Science and TechnologyZheJiang UniversityHangzhouChina

Personalised recommendations