Advertisement

Generative Adversarial Network-Based Regional Epitaxial Traffic Flow Prediction

  • Yan Kang
  • Jinyuan Li
  • Shin-Jye LeeEmail author
  • Hao LiEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1075)

Abstract

Predicting urban traffic flow is of big significant to traffic management and public security. However, with the continuous expansion of urban areas and the development of data acquisition technology, new types of traffic data are characterized by wide spatial distribution, high timeliness and large data volume. Traffic flow forecasting requires high cost and related domain knowledge. Therefore, it has become an urgent research topic to properly use a small amount of traffic data to efficiently construct a traffic prediction model. In this paper, we propose a generative adversarial network-based traffic flow prediction method called RT-GAN which is the real-time prediction of traffic flows in the surroundings area according to the traffic information in the central area. The combination of gated convolution and dilated convolution can capture the traffic information in the near and far regions and perform feature fusion to achieve real-time prediction. Experiments on the Beijing and New York traffic flow data sets show that our method outperforms others, providing a potential solution to practical applications.

Keywords

Traffic flow Generative Adversarial Network Feature fusion Real-time 

References

  1. 1.
    Sarkar, S., Chawla, S., Parambath, S.P., et al.: Effective urban structure inference from traffic flow dynamics. IEEE Trans. Big Data PP(99), 1 (2017)Google Scholar
  2. 2.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  3. 3.
    Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: AAAI (2017)Google Scholar
  4. 4.
    Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X.: DNN-based prediction model for spatio-temporal data. In: SIGSPATIAL, p. 92. ACM (2016)Google Scholar
  5. 5.
    Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., Wang, Y.: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4), 818 (2017)CrossRefGoogle Scholar
  6. 6.
    Yu, R., Li, Y., Demiryurek, U., Shahabi, C., Liu, Y.: Deep learning: a generic approach for extreme condition traffic forecasting. In: Proceedings of SIAM International Conference on Data Mining (2017)Google Scholar
  7. 7.
    Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X., Li, T.: Predicting citywide crowd flows using deep spatio-temporal residual networks. Artif. Intell. 259, 147–166 (2018). S0004370218300973MathSciNetCrossRefGoogle Scholar
  8. 8.
    Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., Gong, P., Ye, J., Li, Z.: Deep multi-view spatial-temporal network for taxi demand prediction. In: AAAI Conference on Artificial Intelligence (2018)Google Scholar
  9. 9.
    Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., Damas, L.: Predicting taxi–passenger demand using streaming data. IEEE TITS 14(3), 1393–1402 (2013)Google Scholar
  10. 10.
    Lippi, M., Bertini, M., Frasconi, P.: Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning. IEEE TITS 14(2), 871–882 (2013)Google Scholar
  11. 11.
    Hasan, S., Ukkusuri, S.V.: Reconstructing activity location sequences from incomplete check-in data: a semi-Markov continuous-time Bayesian network model. IEEE Trans. Intell. Transp. Syst. 19(3), 687–698 (2017)CrossRefGoogle Scholar
  12. 12.
    Cheng, S., Lua, F., Peng, P., et al.: Short-term traffic forecasting: an adaptive ST-KNN model that considers spatial heterogeneity. Comput. Environ. Urban Syst. 71, 186–198 (2018)CrossRefGoogle Scholar
  13. 13.
    Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS (2014)Google Scholar
  14. 14.
    Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., Metaxas, D.: Stack-GAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV (2017)Google Scholar
  15. 15.
    Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)Google Scholar
  16. 16.
    Gupta, A., Johnson, J., Fei-Fei, L., et al.: Social GAN: socially acceptable trajectories with generative adversarial networks (2018)Google Scholar
  17. 17.
    Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. 36(4), 1–14 (2017)CrossRefGoogle Scholar
  18. 18.
    Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction (2016)Google Scholar
  19. 19.
    Dauphin, Y.N., Fan, A., Auli, M., et al.: Language modeling with gated convolutional networks (2016)Google Scholar
  20. 20.
    Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR (2016)Google Scholar
  21. 21.
    Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization (2016)Google Scholar
  22. 22.
    Mao, X., Li, Q., Xie, H., et al.: Least squares generative adversarial networks (2016)Google Scholar
  23. 23.
    Wang, X., Girshick, R., Gupta, A., et al.: Non-local neural networks (2017)Google Scholar
  24. 24.
    Dai, J., Qi, H., Xiong, Y., et al.: Deformable convolutional networks (2017)Google Scholar
  25. 25.
    Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2017)Google Scholar
  26. 26.
    Shmelkov, K., Schmid, C., Alahari, K.: How good is my GAN? (2018)CrossRefGoogle Scholar
  27. 27.
    Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: NIPS (2017)Google Scholar
  28. 28.
    Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are GANs created equal? A large-scale study. arXiv preprint arXiv:1711.10337 (2017)

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.National Pilot School of SoftwareYunnan UniversityKunmingChina
  2. 2.Institute of Technology ManagementNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations