Industrial Cloud Automation for Interconnected Factories

Application to Remote Control of Water Stations
  • Lamine ChalalEmail author
  • Allal Saadane
  • Ahmed Rhiat
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1069)


In the next industrial revolution, called Industry 4.0, manufacturers are focusing on client-specific production and added-value products. For this purpose, factories need new key automation technologies with small extra engineering effort. To make factories smarter, a lot of researches in the literature deal with the digital technologies potential such as Cloud computing and communication networks. That said, there is still lack of concrete applications. This paper is aimed to present our work on implementing and evaluating Proficloud as a new technology suitable to connect distributed factories for remote control and management purpose. For concrete application, we have designed a drinking water distribution system emulator as demonstrator. Proficloud was chosen for its ability to interconnect plants and facilities over long distances. This is done by combining the internet backbone and Profinet, the well-known industrial protocol. In this work, a literature review of modern remote control as well as a methodology to deploy Proficloud technology is presented. The main objective is to give a first evaluation of Proficloud performances based on experimental results, with a focus on latency issues.


Automation Industry 4.0 Remote and distributed control Supervisory control Teleoperation Profinet Water station 


  1. 1.
    Julien, N., Martin, E.: L’usine du futur: Stratégies et déploiement. Dunod, Mayenne (2018)Google Scholar
  2. 2.
    Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., Aharon, D.: Unlocking the potential of the Internet of Things, June 2015. Accessed 01 decembre 2018
  3. 3.
    Weßelmann, M.: Taking profinet networks into the cloud, Industrial Ethernet Book, no. 86, February 2018Google Scholar
  4. 4.
    Chalal, L., Saadane, A., Rhiat, A., Paty, T.: Contrôle à distance et supervision via Proficloud- Application à un systeme de distribution d’eau. L’EAU, L’INDUSTRIE, LES NUISANCES 421, 57–60 (2019)Google Scholar
  5. 5.
    Gungor, V.C., Sahin, D., Kocak, T., Ergüt, S., Buccella, C., Cecati, C., Hancke, G.P.: Smart grid technologies: communication technologies and standards. IEEE Trans. Ind. Inform. 529–539 (2011)CrossRefGoogle Scholar
  6. 6.
    Stouffer, K., Falco, J., Scarfone, K.: Guide to Industrial Control Systems (ICS) Security. Technical report, Gaithersburg, MD, United States (2015)Google Scholar
  7. 7.
    Branislav, A., Šagi, M.: Proposal of a modern SCADA system. In: Proceedings of 19th Telecommunications forum TELFOR, Serbia, Belgrade (2011)Google Scholar
  8. 8.
    Bajer, M.: Dataflow in modern industrial automation systems. Theory and practice. Int. J. Appl. Control Electr. Electron. Eng. 2(4) (2014)Google Scholar
  9. 9.
    Schneider Electric: Battery-powered wireless sensors: Accutech BR20, February 2018. Accessed 12 decembre 2018
  10. 10.
    Wenpeng, L., Duncan, S., Sol, L.: Smart grid communication network capacity planning for power utilities. In: IEEE/PES Transmission and Distribution Conference and Exposition (T&D), New Orleans, LA, USA (2010)Google Scholar
  11. 11.
    Guey Ler, L.: Flood resilience and smart water management: implementation strategies for smart cities. PhD thesis, University of Côte d’Azur (2018)Google Scholar
  12. 12.
    Mel, P., Grance, T.: The NIST Definition of Cloud. NIST Special Publication 800-145, Gaithersburg, USA (2011)Google Scholar
  13. 13.
    Abelin, S.M.: Intelligent monitoring & control capability. World Pumps 17(2), 30–32 (2017)CrossRefGoogle Scholar
  14. 14.
    Niedermaier, M., Malchow, J.-O., Fischer, F., Marzin, D., Merli, D., Roth, V., Von Bodisco, A.: You snooze, you lose: measuring {PLC} cycle times under attacks. In: 12th USENIX Workshop on Offensive Technologies, Baltimore, MD (2018)Google Scholar
  15. 15.
    Fuster Losa, M.: Proyecto de puesta en marcha de unidades de telecontrol compactas y autónomas energéticamente en el contexto de la industria 4.0. Universitat Politècnica de València, València (2018)Google Scholar
  16. 16.
    Merchant, A., Mohan Kumar, M., Ravindra, P., Vyas, P., Manohar, U.: Analytics driven water management system for Bangalore city. Procedia Eng. 70, 1137–1146 (2014)CrossRefGoogle Scholar
  17. 17.
    Armon, A., Gutner, S., Rosenberg, A., Scolnicov, H.: Algorithmic network monitoring for a modern water utility: a case study in Jerusalem. Water Sci. Technol. 63(2), 233–239 (2011)CrossRefGoogle Scholar
  18. 18.
    Elkaseer, A., Salama, M., Ali, H., Scholz, S.: Approaches to a practical implementation of Industry 4.0. In: The Eleventh International Conference on Advances in Computer-Human Interactions, Rome, Italy (2018)Google Scholar
  19. 19.
    Chalal, L., Dieulot, J.-Y., Dauphin-Tanguy, G., Colas, F.: Supervisory predictive control of a hybrid solar panels, microturbine and battery power generation plant. In: IFAC Power Plants and Power Systems Control 2012, Toulouse, France (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Icam of LilleLille CedexFrance

Personalised recommendations