Food, Energy and Water (FEW) Nexus Modeling Framework

  • Yemeserach Mekonnen
  • Arif SarwatEmail author
  • Shekhar Bhansali
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1069)


As the global population soars from today’s 7.3 billion to an estimated 10 billion by 2050 of which 400 million to the US, the demand for Food, Energy and Water (FEW) are expected to more than double. Such an increase in population and consequently, in the demand for FEW resources will undoubtedly be a global challenge. Food, energy and water for smart sustainable cities involve a multi-scale challenge problem. The three dynamic interacting infrastructures require a mathematical framework for analyzing such a large complex system. Technology innovation at the nexus and quantifying the nexus are two critical solutions in this research area. This paper focuses on quantifying and modeling the nexus by proposing a Leontief input-output model. It further uses network analysis to investigate the networks of FEW interdependencies from the input-output model.


FEW systems Modeling Nexus Energy Input-output Graph theory Network analysis 


  1. 1.
    FAO: Energy Smart Food for People and Climate. Food and Agriculture Organization of the United Nations (2011)Google Scholar
  2. 2.
    IRENA: Renewable Energy in the Water, Energy and Food Nexus. International Renewable Energy Agency, January 2015Google Scholar
  3. 3.
    Lehmann, S.: Implementing the urban nexus approach for improved resource-efficiency of developing cities in southeast-asia. City Culture Soc. 13, 46–56 (2018)CrossRefGoogle Scholar
  4. 4.
    Hussey, K., Pittock, J., et al.: The energy-water nexus: managing the links between energy and water for a sustainable future (2012)Google Scholar
  5. 5.
    FAO: The water-energy-food nexus - a new approach in support of food security and sustainable agriculture. Food and Agriculture Organization of the United Nations (2014)Google Scholar
  6. 6.
    FAO: Walking the Nexus Talk: Assessing the Water-Energy-Food Nexus in the Context of the Sustainable Energy for all Initiative. Food and Agriculture Organization of the United Nations (2014)Google Scholar
  7. 7.
    Hoff, H.: Understanding the nexus. Background paper for the Bonn2011 conference (2011)Google Scholar
  8. 8.
    Weitz, N., Nilsson, M., Davis, M.: A nexus approach to the post-2015 agenda: formulating integrated water, energy, and food sdgs. SAIS Rev. Int. Aff. 34(2), 37–50 (2014)CrossRefGoogle Scholar
  9. 9.
    IEA: Water energy nexus: excerpt from the world energy outlook 2016 (2016)Google Scholar
  10. 10.
    SOER: State of the environment, cross-sectoral assessment of the agriculture, energy, forestry and transport sectors (2010)Google Scholar
  11. 11.
    Gerbens-Leenes, W., Hoekstra, A.Y., van der Meer, T.H.: The water footprint of bioenergy. Proc. Natl. Acad. Sci. 106(25), 10219–10223 (2009)CrossRefGoogle Scholar
  12. 12.
    World Economic Forum Water Initiative, et al.: Water Security: The Water-Food-energy-Climate Nexus. Island Press (2012)Google Scholar
  13. 13.
    Gaffigan, M.: Energy-Water Nexus: A Better and Coordinated Understanding of Water Resources Could Help Mitigate the Impacts of Potential Oil Shale Development. DIANE Publishing Company (2011)Google Scholar
  14. 14.
    Mekonnen, Y., Sarwat, A.I.: Renewable energy supported microgrid in rural electrification of Sub-Saharan Africa. In: 2017 IEEE PES PowerAfrica, pp. 595–599. IEEE (2017)Google Scholar
  15. 15.
    Jafari, H., Mahmoudi, M., Fatehi, A., Naderi, M.H., Kaya, E.: Improved power sharing with a back-to-back converter and state-feedback control in a utility-connected microgrid. In: 2018 IEEE Texas Power and Energy Conference (TPEC), pp. 1–6. IEEE (2018)Google Scholar
  16. 16.
    Olowu, T.O., Sundararajan, A., Moghaddami, M., Sarwat, A.: Fleet aggregation of photovoltaic systems: a survey and case study. In: 2019 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT) (2019)Google Scholar
  17. 17.
    Jafari, H., Mahmodi, M., Rastegar, H.: Frequency control of micro-grid in autonomous mode using model predictive control. In: Iranian Conference on Smart Grids, pp. 1–5. IEEE (2012)Google Scholar
  18. 18.
    IEA: World Energy Outlook 2009 (2009)Google Scholar
  19. 19.
    Cooley, H., Christian-Smith, J., Gleick, P.H.: More With Less: Agricultural Water Conservation and Efficiency in California. Pacific Institute, Oakland, California, September, 30:2011 (2008). Accessed MayGoogle Scholar
  20. 20.
    Kaddoura, S., El Khatib, S.: Review of water-energy-food nexus tools to improve the nexus modelling approach for integrated policy making. Environ. Sci. Policy 77, 114–121 (2017)CrossRefGoogle Scholar
  21. 21.
    FAO: Global agriculture towards 2050. High level expert forum - how to feed the world in 2050. Food and Agriculture Organization of the United Nations (2009)Google Scholar
  22. 22.
    Mekonnen, Y., Burton, L., Sarwat, A., Bhansali, S.: IoT sensor network approach for smart farming: an application in food, energy and water system. In: 2018 IEEE Global Humanitarian Technology Conference (GHTC), pp. 1–5. IEEE (2018)Google Scholar
  23. 23.
    Burton, L., Mekonnen, Y., Sarwat, A.I., Bhansali, S., Jayachandran, K.: Exploring wireless sensor network technology in sustainable okra garden: a comparative analysis of okra grown in different fertilizer treatments. CoRR, abs/1808.07381 (2018)Google Scholar
  24. 24.
    Onibonoje, M.O., Olowu, T.O.: Real-time remote monitoring and automated control of granary environmental factors using wireless sensor network. In: 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), pp. 113–118. IEEE (2017)Google Scholar
  25. 25.
    Michelini, G., Moraes, R.N., Cunha, R.N., Costa, J.M.H., Ometto, A.R.: From linear to circular economy: PSS conducting the transition. Procedia CIRP 64, 2–6 (2017)CrossRefGoogle Scholar
  26. 26.
    Davis, S.C., Kauneckis, D., Kruse, N.A., Miller, K.E., Zimmer, M., Dabelko, G.D.: Closing the loop: integrative systems management of waste in food, energy, and water systems. J. Environ. Stud. Sci. 6(1), 11–24 (2016)CrossRefGoogle Scholar
  27. 27.
    James, S.J., James, C.: The food cold-chain and climate change. Food Res. Int. 43(7), 1944–1956 (2010)CrossRefGoogle Scholar
  28. 28.
    Karan, E., Asadi, S., Mohtar, R., Baawain, M.: Towards the optimization of sustainable food-energy-water systems: a stochastic approach. J. Cleaner Prod. 171, 662–674 (2018)CrossRefGoogle Scholar
  29. 29.
    Olowu, T., Sundararajan, A., Moghaddami, M., Sarwat, A.: Future challenges and mitigation methods for high photovoltaic penetration: a survey. Energies 11(7), 1782 (2018)CrossRefGoogle Scholar
  30. 30.
    Eftelioglu, E., Jiang, Z., Ali, R., Shekhar, S.: Spatial computing perspective on food energy and water nexus. J. Environ. Stud. Sci. 6(1), 62–76 (2016)CrossRefGoogle Scholar
  31. 31.
    Garcia, D.J., You, F.: The water-energy-food nexus and process systems engineering: a new focus. Comput. Chem. Eng. 91, 49–67 (2016)CrossRefGoogle Scholar
  32. 32.
    Martinez, P., Blanco, M., Castro-Campos, B.: The water-energy-food nexus: a fuzzy-cognitive mapping approach to support nexus-compliant policies in Andalusia (Spain). Water 10(5), 664 (2018)CrossRefGoogle Scholar
  33. 33.
    Miller, R.E., Blair, P.D.: Input-Output Analysis: Foundations and Extensions. Cambridge University Press (2009)Google Scholar
  34. 34.
    Bondy, J.A., Murty, U.S.R., et al.: Graph Theory with Applications, vol. 290. Citeseer (1976)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yemeserach Mekonnen
    • 1
  • Arif Sarwat
    • 1
    Email author
  • Shekhar Bhansali
    • 1
  1. 1.Florida International UniversityMiamiUSA

Personalised recommendations