Determining a Framework for the Generation and Evaluation of Ambient Intelligent Agent System Designs

  • Milica Pavlovic
  • Sotirios KotsopoulosEmail author
  • Yihyun Lim
  • Scott Penman
  • Sara Colombo
  • Federico Casalegno
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1069)


The design and realization of Ambient Intelligence (AmI) systems using Artificially Intelligent (AI) agents is a rising field of research. However, the absence of clearly defined working criteria, supporting the generation and evaluation of AmI agent system designs, is a conspicuous obstacle to their advancement. The contribution of this paper is that we determine and test a framework for the generation and evaluation of AmI system designs, based on user experience and business criteria. Specifically, the process of designing a personal lighting AI agent, in collaboration with a leading lighting design company, is used as a case study to determine and test a framework for the generation and evaluation of AmI system designs based on feasibility and acceptability. First, we use storytelling videos to describe and communicate the user values and design scenarios to the stakeholders. Second, we generate design proposals for a lighting AmI agent based on five distinct systemic factors, namely: (a) the context of interaction; (b) the required system data; (c) the required sensing input; (d) the required user input; and (e) the desired system output. Finally third we determine an evaluation framework that is based on three distinct levels of in-built system intelligence, from lower to higher. The three levels reflect the feasibility and acceptability of the system. Feasibility is what a specific company is capable of producing, and in what timeframe. Acceptability is the potential of familiarity and trust that the users can feel while interacting with the AI agent.


Ambient Intelligence User Experience Design vision Generation framework Evaluation framework 



This research is a result of collaboration between the MIT Design Lab and Signify. Doctoral research of the author Milica Pavlovic has been funded by TIM S.p.A., Services Innovation Department, Joint Open Lab Digital Life, Milan, Italy.


  1. 1.
    Zelkha, E., Epstein, B.: From devices to ambient intelligence. In: The Transformation of Consumer Electronics, Presentation at the Digital Living Room Conference, Philips (1998)Google Scholar
  2. 2.
    Zimmerman, J., Forlizzi, J.: Research through design in HCI. In: Ways of Knowing in HCI, pp. 167–189. Springer, New York (2014)Google Scholar
  3. 3.
    Picard, R.W.: Affective computing: challenges. Int. J. Hum. Comput. Stud. 59(1–2), 55–64 (2003)Google Scholar
  4. 4.
    Mukherjee, S., Aarts, E., Doyle, T.: Special issue on ambient intelligence. Inf. Syst. Front. 11(1), 1–5 (2009)Google Scholar
  5. 5.
    Aarts, E., Encarnaçao, J. (eds.): True Visions: Tales on the Realization of Ambient Intelligence. Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: technologies, applications, and opportunities. Pervasive Mob. Comput. 5(4), 277–298 (2009)Google Scholar
  7. 7.
    Weiser, M.: The computer for the twenty-first century, pp. 94–100. Scientific American, September Issue (1991)Google Scholar
  8. 8.
    Hanke, S., Tsiourti, C., Sili, M., Christodoulou, E.: Embodied ambient intelligent systems. In: Recent Advances in Ambient Assisted Living - Bridging Assistive Technologies e-Health and Personalized Health Care. IOS Press, Tepper Drive Clifton (2015)Google Scholar
  9. 9.
    O’Grady, M.J., O’Hare, G.M., Poslad, S.: Smart environment interaction: a user assessment of embedded agents. J. Ambient Intell. Smart Environ. 5(3), 331–346 (2013)Google Scholar
  10. 10.
    Burr, C., Cristianini, N., Ladyman, J.: An analysis of the interaction between intelligent software agents and human users. Mind. Mach. 28(4), 735–774 (2018)Google Scholar
  11. 11.
    Gams, M., Gu, I.Y.H., Härmä, A., Muñoz, A., Tam, V.: Artificial intelligence and ambient intelligence. J. Ambient Intell. Smart Environ. 11(1), 71–86 (2019)Google Scholar
  12. 12.
    Rasch, K.: An unsupervised recommender system for smart homes. J. Ambient Intell. Smart Environ. 6(1), 21–37 (2014)Google Scholar
  13. 13.
    Plötz, T., Kleine-Cosack, C. Fink, G.A.: Towards human centered ambient intelligence. In: European Conference on Ambient Intelligence, pp. 26–43. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Airaghi, A., Schuurmans, M.: ISTAG scenarios for ambient intelligence in 2010. European Commission Community Research (2001)Google Scholar
  15. 15.
    Brey, P.: Freedom and privacy in ambient intelligence. Ethics Inf. Technol. 7(3), 157–166 (2005)Google Scholar
  16. 16.
    Streitz, N.A.: From human–computer interaction to human–environment interaction: ambient intelligence and the disappearing computer. In: Universal Access in Ambient Intelligence Environments, pp. 3–13. Springer, Heidelberg (2007)Google Scholar
  17. 17.
    Alves Lino, J., Salem, B., Rauterberg, M.: Responsive environments: user experiences for ambient intelligence. J. Ambient Intell. Smart Environ. 2(4), 347–367 (2010)Google Scholar
  18. 18.
    Koskinen, I.: Agonistic, convivial, and conceptual aesthetics in new social design. Des. Issues 32(3), 18–29 (2016)Google Scholar
  19. 19.
    Forlano, L.: Decentering the human in the design of collaborative cities. Des. Issues 32(3), 42–54 (2016)Google Scholar
  20. 20.
    Hill, D.: The city is my homescreen. In: Proceedings of the 2018 ACM International Conference on Interactive Surfaces and Spaces, p. 1. ACM (2018)Google Scholar
  21. 21.
    Lou, Y.: The idea of environmental design revisited. Des. Issues 35(1), 23–35 (2019)Google Scholar
  22. 22.
    MacDonald, C.M., Atwood, M.E.: Changing perspectives on evaluation in HCI: past, present, and future. In: CHI Extended Abstracts, Paris, France (2013)Google Scholar
  23. 23.
    Hassenzahl, M.: The thing and I: understanding the relationship between user and product. In: Funology: From Usability to Enjoyment, pp. 31–42. Kluwer Publishers, Norwell (2003)Google Scholar
  24. 24.
    Forlizzi, J., Battarbee, K.: Understanding experience in interactive systems. In: Conference on Designing Interactive Systems. Cambridge (2004)Google Scholar
  25. 25.
    Arhippainen, L., Hickey, S., Pakanen, M., Karhu, A.: User experiences of service applications on two similar 3D UIs with different 3D space contexts. MindTrek, Helsinki (2013)Google Scholar
  26. 26.
    Karapanos, E., Zimmerman, J., Forlizzi, J., Martens, J.: User experience over time: an initial framework. CHI, Boston (2009)Google Scholar
  27. 27.
    Pavlovic, M., Colombo, S., Lim, Y., Casalegno, F.: Designing for ambient UX: case study of a dynamic lighting system for a work space. In: Proceedings of the 2018 ACM International Conference on Interactive Surfaces and Spaces, pp. 351–356. ACM (2018)Google Scholar
  28. 28.
    Treur, J.: On human aspects in ambient intelligence. In: European Conference on Ambient Intelligence, pp. 262–267. Springer, Heidelberg (2007)Google Scholar
  29. 29.
    Salvi, D., Montalva Colomer, J.B., Arredondo, M.T., Prazak-Aram, B., Mayer, C.: A framework for evaluating ambient assisted living technologies and the experience of the universAAL project. J. Ambient Intell. Smart Environ. 7(3), 329–352 (2015)Google Scholar
  30. 30.
    Veronese, F., Masciadri, A., Trofimova, A.A., Matteucci, M., Salice, F.: Realistic human behaviour simulation for quantitative ambient intelligence studies. Technol. Disabil. 28(4), 159–177 (2016)Google Scholar
  31. 31.
    Bono-Nuez, A., Blasco, R., Casas, R., Martín-del-Brío, B.: Ambient intelligence for quality of life assessment. J. Ambient Intell. Smart Environ. 6(1), 57–70 (2014)Google Scholar
  32. 32.
    Ntoa, S., Margetis, G., Antona, M., Stephanidis, C.: UXAmI observer: an automated user experience evaluation tool for ambient intelligence environments. In: Proceedings of SAI Intelligent Systems Conference, pp. 1350–1370. Springer, Cham (2018)Google Scholar
  33. 33.
    Kymäläinen, T., Kaasinen, E., Hakulinen, J., Heimonen, T., Mannonen, P., Aikala, M., Lehtikunnas, L.: A creative prototype illustrating the ambient user experience of an intelligent future factory. J. Ambient Intell. Smart Environ. 9(1), 41–57 (2017)Google Scholar
  34. 34.
    Gaggioli, A.: Optimal experience in ambient intelligence. Ambient Intell. 3543(5), 35–43 (2005)Google Scholar
  35. 35.
    Corno, F., Guercio, E., De Russis, L., Gargiulo, E.: Designing for user confidence in intelligent environments. J. Reliable Intell. Environ. 1(1), 11–21 (2015)Google Scholar
  36. 36.
    Forest, F., Mallein, P., Arhippainen, L.: Paradoxical user acceptance of ambient intelligent systems: sociology of user experience approach. In Proceedings of International Conference on Making Sense of Converging Media, p. 211. ACM (2013)Google Scholar
  37. 37.
    Cabitza, F., Fogli, D., Lanzilotti, R., Piccinno, A.: End-user development in ambient intelligence: a user study. In: Proceedings of the 11th Biannual Conference on Italian SIGCHI Chapter, pp. 146–153. ACM (2015)Google Scholar
  38. 38.
    Little, L., Briggs, P.: Designing ambient intelligent scenarios to promote discussion of human values. In: Interact: Workshop on Ambient Intelligence, September 2005, Rome (2005)Google Scholar
  39. 39.
    Colombo, S.: Morals, ethics, and the new design conscience. In: Rampino, L. (eds.) Evolving Perspectives in Product Design: From Mass Production to Social Awareness. Franco-Angeli (2018)Google Scholar
  40. 40.
    Wiegerling, K.: The question of ethics in ambient intelligence. In: Ubiquitous Computing in the Workplace, pp. 37–44. Springer, Cham (2015)Google Scholar
  41. 41.
    Streitz, N., Charitos, D., Kaptein, M., Böhlen, M.: Grand challenges for ambient intelligence and implications for design contexts and smart societies. J. Ambient Intell. Smart Environ. 11(1), 87–107 (2019)Google Scholar
  42. 42.
    Arslan, P., Casalegno, F., Giusti, L., Ileri, O., Kurt, O.F., Ergüt, S.: Big Data as a source for Designing Services. Web (2017)Google Scholar
  43. 43.
    Pavlovic, M., Botto, F., Pillan, M., Criminisi, C., Valla, M.: Social consensus: contribution to design methods for AI agents that employ personal data. In: International Conference on Intelligent Human Systems Integration, pp. 877–883. Springer, Cham (2019)Google Scholar
  44. 44.
    Parmar, A.J.: Design attitude. Des. Issues 32(3), 116–118 (2016)Google Scholar
  45. 45.
    Sheppard, B., Sarrazin, H., Kouyoumjian, G., Dore, F.: The business value of design. McKinsey design. McKinsey Quarterly. Accessed from 11 Jan 2019
  46. 46.
    Friedman, B.: Value sensitive design. In: Bainbridge, W.S. (ed.) Encyclopedia of human-computer interaction, pp. 769–774. Berkshire Publishing Group, Great Barrington (2004)Google Scholar
  47. 47.
    Kalbach, J.: Mapping Experiences: A Complete Guide to Creating Value Through Journeys, Blueprints, and Diagrams. O’Reilly Media, Inc., Sebastopol (2016)Google Scholar
  48. 48.
    Norman, D.A., Verganti, R.: Incremental and radical innovation: design research vs. technology and meaning change. Des. Issues 30(1), 78–96 (2014)Google Scholar
  49. 49.
    Barrett, G., Omote, R.: Projected-capacitive touch technology. Inf. Display 26(3), 16–21 (2010)Google Scholar
  50. 50.
    Syduzzaman, M., Patwary, S.U., Farhana, K., Ahmed, S.: Smart textiles and nano-technology: a general overview. J. Text. Sci. Eng. 5, 1000181 (2015)Google Scholar
  51. 51.
    Dorst, K.: The core of ‘design thinking’ and its application. Des. Studies 32(6), 521–532 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Milica Pavlovic
    • 1
    • 2
  • Sotirios Kotsopoulos
    • 1
    Email author
  • Yihyun Lim
    • 1
  • Scott Penman
    • 1
  • Sara Colombo
    • 1
  • Federico Casalegno
    • 1
  1. 1.Massachusetts Institute of Technology, Design LabCambridgeUSA
  2. 2.Politecnico di Milano, Interaction and Experience Design Research LabMilanItaly

Personalised recommendations