Advertisement

Automatic Grasping Using Tactile Sensing and Deep Calibration

  • Masoud BaghbahariEmail author
  • Aman Behal
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1069)

Abstract

Tactile perception is an essential ability of intelligent robots in interaction with their surrounding environments. This perception as an intermediate level acts between sensation and action and has to be defined properly to generate suitable action in response to sensed data. In this paper, we propose a feedback approach to address robot grasping task using force-torque tactile sensing. While visual perception is an essential part for gross reaching, constant utilization of this sensing modality can negatively affect the grasping process with overwhelming computation. In such case, human being utilizes tactile sensing to interact with objects. Inspired by, the proposed approach is presented and evaluated on a real robot to demonstrate the effectiveness of the suggested framework. Moreover, we utilize a deep learning framework called Deep Calibration in order to eliminate the effect of bias in the collected data from the robot sensors.

Keywords

Automatic grasping Tactile sensing Deep calibration Assistive robot 

References

  1. 1.
    Baghbahari, M., Hajiakhoond, N.: Evaluation of estimation approaches on the quality and robustness of collision warning systems. In: SoutheastCon 2018, pp. 1–7. IEEE (2018)Google Scholar
  2. 2.
    Baghbahari, M., Hajiakhoond, N., Behal, A.: Real-time policy generation and its application to robot grasping. arXiv preprint arxiv:1808.05244 (2018)
  3. 3.
    Bekiroglu, Y., Laaksonen, J., Jørgensen, J.A., Kyrki, V., Kragic, D.: Assessing grasp stability based on learning and haptic data. IEEE Trans. Rob. 27(3), 616 (2011)CrossRefGoogle Scholar
  4. 4.
    Bohg, J., Hausman, K., Sankaran, B., Brock, O., Kragic, D., Schaal, S., Sukhatme, G.S.: Interactive perception: leveraging action in perception and perception in action. IEEE Trans. Rob. 33(6), 1273–1291 (2017)CrossRefGoogle Scholar
  5. 5.
    Chebotar, Y., Hausman, K., Su, Z., Sukhatme, G.S., Schaal, S.: Self-supervised regrasping using spatio-temporal tactile features and reinforcement learning. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1960–1966. IEEE (2016)Google Scholar
  6. 6.
    Chebotar, Y., Kroemer, O., Peters, J.: Learning robot tactile sensing for object manipulation. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3368–3375. IEEE (2014)Google Scholar
  7. 7.
    Chitta, S., Sturm, J., Piccoli, M., Burgard, W.: Tactile sensing for mobile manipulation. IEEE Trans. Rob. 27(3), 558–568 (2011)CrossRefGoogle Scholar
  8. 8.
    Cirillo, A., Cirillo, P., De Maria, G., Natale, C., Pirozzi, S.: Control of linear and rotational slippage based on six-axis force/tactile sensor. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1587–1594. IEEE (2017)Google Scholar
  9. 9.
    Corcoran, C., Platt, R.: A measurement model for tracking hand-object state during dexterous manipulation. In: 2010 IEEE International Conference on Robotics and Automation, pp. 4302–4308. IEEE (2010Google Scholar
  10. 10.
    Dang, H., Allen, P.K.: Stable grasping under pose uncertainty using tactile feedback. Auton. Rob. 36(4), 309–330 (2014)CrossRefGoogle Scholar
  11. 11.
    Gómez Eguíluz, A., Rano, I., Coleman, S.A., Martin McGinnity, T.: Reliable object handover through tactile force sensing and effort control in the shadow robot hand. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 372–377. IEEE (2017)Google Scholar
  12. 12.
    Finn, C., Tan, X.Y., Duan, Y., Darrell, T., Levine, S., Abbeel, P.: Deep spatial autoencoders for visuomotor learning. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 512–519. IEEE (2016)Google Scholar
  13. 13.
    Gao, Y., Hendricks, L.A., Kuchenbecker, K.J., Darrell, T.: Deep learning for tactile understanding from visual and haptic data. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 536–543. IEEE (2016)Google Scholar
  14. 14.
    Guo, D., Sun, F., Liu, H., Kong, T., Fang, B., Xi, N.: A hybrid deep architecture for robotic grasp detection. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1609–1614. IEEE (2017)Google Scholar
  15. 15.
    Kroemer, O., Lampert, C.H., Peters, J.: Learning dynamic tactile sensing with robust -based training. IEEE Trans. Rob. 27(3), 545–557 (2011)CrossRefGoogle Scholar
  16. 16.
    Lee, M.A., Zhu, Y., Srinivasan, K., Shah, P., Savarese, S., Fei-Fei, L., Garg, A., Bohg, J.: Making sense of vision and touch: self-supervised learning of multimodal representations for contact-rich tasks. arXiv preprint arXiv:1810.10191 (2018)
  17. 17.
    Li, R., Platt, R., Yuan, W., ten Pas, A., Roscup, N., Srinivasan, M.A., Adelson, E.: Localization and manipulation of small parts using gelsight tactile sensing. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3988–3993. IEEE (2014)Google Scholar
  18. 18.
    Lin, Y., Sun, Y.: Robot grasp planning based on demonstrated grasp strategies. Int. J. Rob. Res. 34(1), 26–42 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Murali, A., Li, Y., Gandhi, D., Gupta, A.: Learning to grasp without seeing. arXiv preprint arXiv:1805.04201 (2018)
  20. 20.
    Nowak, D.A., Glasauer, S., Hermsdörfer, J.: Force control in object Manipulation’a model for the study of sensorimotor control strategies. Neurosci. Biobehav. Rev. 37(8), 1578–1586 (2013)CrossRefGoogle Scholar
  21. 21.
    Petrovskaya, A., Khatib, O., Thrun, S., Ng, A.Y.: Touch based perception for object manipulation (2007)Google Scholar
  22. 22.
    Romano, J.M., Hsiao, K., Niemeyer, G., Chitta, S., Kuchenbecker, K.J.: Human-inspired robotic grasp control with tactile sensing. IEEE Trans. Rob. 27(6), 1067–1079 (2011)CrossRefGoogle Scholar
  23. 23.
    Schneider, A., Sturm, J., Stachniss, C., Reisert, M., Burkhardt, H., Burgard, W.: Object identification with tactile sensors using bag-of-features. In: IROS, vol. 9, pp. 243–248 (2009)Google Scholar
  24. 24.
    van Hoof, H., Chen, N., Karl, M., van der Smagt, P., Peters, J.: Stable reinforcement learning with autoencoders for tactile and visual data. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3928–3934. IEEE (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Central Florida Research Park and NanoScience Technology Center, Department of Electrical and Computer EngineeringUniversity of Central FloridaOrlandoUSA

Personalised recommendations