Advertisement

Using TRIZ in the Healthcare Environment: First Proposition of a New Design Method

  • Axel DeglandEmail author
  • Camille Jean
  • Claude Gazo
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 572)

Abstract

Design in the healthcare environment is challenging. More than in the other activity sectors, it requires to take the users (patients and medical staff) as experts in the loop. This article will describe the bases of a new design method integrating TRIZ concepts for the healthcare environment. A first case study will be presented on the design of an exoskeleton specialized in the assistance of hemiplegic patients during their re-education.

Keywords

Design thinking TRIZ Biomechanics Robotic Healthcare 

Notes

Acknowledgments

This research was carried out within the framework of the RehaByExo project supported by the Carnot Institute ARTS.

References

  1. 1.
    World Health Organization: Stroke, Cerebrovascular accident (2019). https://www.who.int/topics/cerebrovascular_accident/en/
  2. 2.
    Jørgensen, H.S., Nakayama, H.-L.: Outcome and time course of recovery in stroke. Arch. Phys. Med. Rehabil. 76(5), 399–405 (1995)CrossRefGoogle Scholar
  3. 3.
    Bourgeais, A.L., Guay, V., Laroudie, F., Marsal, C., Thevenin-Lemoine, E.: Informations et programme d’exercices dans les suites d’un AVC. Livret destiné aux patients, aux aidants et aux rééducateurs (2009). ISBN 978-2-7466-2220-3Google Scholar
  4. 4.
    Dobkin, B.H.: Rehabilitation after stroke. N. Engl. J. Med. 352, 1677–1684 (2005)CrossRefGoogle Scholar
  5. 5.
    Ferrucci, L., et al.: Recovery of functional status after stroke. A postrehabilitation follow-up study. Stroke 24(2), 200–205 (1993)CrossRefGoogle Scholar
  6. 6.
    Haute Autorité de Santé: Accident vasculaire cérébral: méthodes de rééducation de la fonction motrice chez l’adulte (2012)Google Scholar
  7. 7.
    Ali, H.: Bionic exoskeleton: history, development and the future. In: IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), International Conference on Advances in Engineering & Technology (2014)Google Scholar
  8. 8.
    Anam, K., Al-Jumaily, A.A.: Active exoskeleton control systems: state of the art. Proc. Eng. 41, 988–994 (2012)CrossRefGoogle Scholar
  9. 9.
    Burgar, C.G., Lum, P.S., Shor, P.C., Van der Loos, H.M.: Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience. J. Rehabil. Res. Dev. 37(6), 663–674 (2000)Google Scholar
  10. 10.
    Rajesh, S.M.: Design of human exo-skeleton suit for rehabilitation of hemiplegic people. Proc. Eng. 51, 544–553 (2013)CrossRefGoogle Scholar
  11. 11.
    Lee, K.: Innovative Design Thinking Process with TRIZ (s.d.)Google Scholar
  12. 12.
    Faste, R., Roth, B., Wilde, D.: Integrating Creativity into the Mechanical Engineering Curriculum. ASME Resource Guide to Innovation in Engineering Design. American Society of Mechanical Engineers, New York (1993)Google Scholar
  13. 13.
    Doorley, S., Holcomb, S., Klebahn, P., Segovia, K., Utley, J.: Design thinking bootleg. Stanford (2018)Google Scholar
  14. 14.
    Dorst, K.: The core of ‘design thinking’ and its application. Des. Stud. 32(6), 521–532 (2011)CrossRefGoogle Scholar
  15. 15.
    Dym, C.L., Agogino, A.M., Eris, O., Frey, D.D., Leifer, L.J.: Engineering design thinking, teaching, and learning. J. Eng. Educ. 94(1), 103–120 (2005)CrossRefGoogle Scholar
  16. 16.
    Mann, D.: An introduction to TRIZ: the theory of inventive problem solving. Creat. Innov. Manag. 10(2), 123–125 (2001)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Arts et Métiers ParisTech - Laboratoire Conception de Produits et InnovationParisFrance

Personalised recommendations