Advertisement

Limitations to the Structure-Based Design of HIV-1 Vaccine Immunogens

  • Marc H V Van Regenmortel
Chapter

Abstract

In spite of 25 years of intensive research, no effective human immunodeficiency virus type 1 (HIV-1) vaccine has yet been developed. One reason for this is that investigators have concentrated mainly on the structural analysis of HIV-1 antigens because they assumed that it should be possible to deduce vaccine-relevant immunogens from the structure of viral antigens bound to neutralizing monoclonal antibodies. This unwarranted assumption arises from misconceptions regarding the nature of protein epitopes and from the belief that it is justified to extrapolate from the antigenicity to the immunogenicity of proteins.

Although the structure of the major HIV-1 antigenic sites has been elucidated, this knowledge has been of little use for designing an HIV-1 vaccine. Little attention has been given to the fact that protective immune responses tend to be polyclonal and involve antibodies directed to several different epitopes. It is concluded that only trial and error, empirical investigations using numerous immunization protocols may eventually allow us to identify which mixtures of immunogens are likely to be the best candidates for an HIV-1 vaccine.

Keywords

Antigenicity Discontinuous epitopes Immunogenicity HIV-1 antigenic sites HIV-1 vaccine Monoclonal antibodies Structure-based vaccine design 

References

  1. Alam SM, McAdams M, Boren D, Rak M, Scearce RM, Gao F, et al. The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes. J Immunol. 2007;178:4424–35.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alam SM, Morelli M, Dennison SM, Liao HX, Zhang R, Xia SM, Rits-Volloch S, Sun L, Harrison SC, Haynes BF, Chen B. Role of HIV membrane in neutralization by two broadly neutralizing antibodies. Proc Natl Acad Sci U S A. 2009;106:20234–9.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amela I, Cedano J, Querol E. Pathogen proteins eliciting antibodies do not share epitopes with host proteins: a bioinformatics approach. PLoS One. 2007;2:e512.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arthur LO, Bess JW Jr, Chertova EN, Rossio JL, Esser MT, Benveniste RE, Henderson LE, et al. Chemical inactivation of retroviral infectivity by targeting nucleocapsid protein zinc fingers: a candidate SIV vaccine. AIDS Res Hum Retrovir. 1998;14(Suppl 3):S311–9.PubMedGoogle Scholar
  5. Atassi MZ, Smith JA. A proposal for the nomenclature of antigenic sites in peptides and proteins. Immunochemistry. 1978;15:609–10.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Berger C, Weber-Bornhauser S, Eggenberger J, Hanes J, Plückthun A, Bosshard HR. Antigen recognition by conformational selection. FEBS Lett. 1999;450:149–53.PubMedCrossRefGoogle Scholar
  7. Berzofsky JA. Intrinsic and extrinsic factors in protein antigenic structure. Science. 1985;229:932–40.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Berzofsky JA, Schechter AN. The concepts of crossreactivity and specificity in immunology. Mol Immunol. 1981;18:751–63.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Binley J. Specificities of broadly neutralizing anti-HIV-1 sera. Curr Opin HIV AIDS. 2009;4:364–72.PubMedCrossRefGoogle Scholar
  10. Binley JM, Lybarger EA, Crooks ET, Seaman MS, Gray E, Davis KL, Decker JM, Wycuff D, Harris L, Hawkins N, et al. Profiling the specificity of neutralizing antibodies in a large panel of plasmas from patients chronically infected with human immunodeficiency virus type 1 subtypes B and C. J Virol. 2008;82:11651–68.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Binley JM, Ban YE, Crooks ET, Eggink D, Osawa K, Schief WR, et al. Role of complex carbohydrates in human immunodeficiency virus type 1 infection and resistance to antibody neutralization. J Virol. 2010;84:5637–55.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bosshard HR. Molecular recognition by induced fit: how fit is the concept? News Physiol Sci. 2001;16:171–3.PubMedGoogle Scholar
  13. Bothner B, Dong XF, Bibbs L, Johnson JE, Siuzdak G. Evidence of viral capsid dynamics using limited proteolysis and mass spectrometry. J Biol Chem. 1998;9:673–6.CrossRefGoogle Scholar
  14. Broder CC, Earl PL, Long D, Abedon ST, Moss B, Doms RW. Antigenic implications of human immunodeficiency virus type 1 envelope quaternary structure: oligomer-specific and -sensitive monoclonal antibodies. Proc Natl Acad Sci U S A. 1994;91:11699–703.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brown F. Inactivation of viruses by aziridines. Vaccine. 2002;20:322–7.CrossRefGoogle Scholar
  16. Brunel FM, Zwick MB, Cardoso RMF, Nelson JD, Wilson IA, Burton DR, Dawson PE. Structure-function analysis of the epitope for 4E10, a humanimmunodeficiency virus type 1 (HIV-1) broadly neutralizing antibody. J Virol. 2006;80:1680–7.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Burton DR. Antibodies, viruses and vaccines. Nat Rev Immunol. 2002;2:706–13.PubMedCrossRefGoogle Scholar
  18. Caioli SE. Benchmarking B-cell epitope prediction for the design of peptide-based vaccines: problems and prospects. J Biomed Biotechnol. 2010;2010:910524.  https://doi.org/10.1155/2010/910524.CrossRefGoogle Scholar
  19. Cardoso RM, Zwick MB, Stanfield RL, Kunert R, Binley JM, Katinger H, et al. Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. Immunity. 2005;22:163–73.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chen SW, Van Regenmortel MHV, Pellequer JL. Structure-activity relationships in peptide-antibody complexes: implications for epitope prediction and development of synthetic peptide vaccines. Curr Med Chem. 2009;16:953–64.PubMedCrossRefGoogle Scholar
  21. Cho MW, Lee MK, Chen CH, Matthews T, Martin MA. Identification of gp 120 regions targeted by a highly potent neutralizing antiserum elicited in a chimpanzee inoculated with a primary human immunodeficiency virus type 1 isolate. J Virol. 2000;74:9749–54.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Coëffier E, Clément JM, Cussac V, Khodaei-Boorane N, Jehanno M, Rojas M, et al. Antigenicity and immunogenicity of the HIV-1 gp41 epitope ELDKWA inserted into permissive sites of the MalE protein. Vaccine. 2001;19:684–93.CrossRefGoogle Scholar
  23. Decker JM, Bibollet-Ruche F, Wei X, Wang S, Levy DN, Wang W, et al. Antigenic conservation and immunogenicity of the HIV coreceptor binding site. J Exp Med. 2005;201:1407–19.PubMedPubMedCentralCrossRefGoogle Scholar
  24. DiMarchi R, Brooke G, Gale C, Cracknell V, Doel T, Mowat N. Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science. 1986;232:639–41.PubMedCrossRefGoogle Scholar
  25. Doan LX, Li M, Chen C, Yao Q. Virus-like particles as HIV-1 vaccines. Rev Med Virol. 2005;15:75–88.PubMedCrossRefGoogle Scholar
  26. Doria-Rose NA, Klein RM, Manion MM, O’Dell S, Phogat A, Chakrabarti B, et al. Frequency and phenotype of human immunodeficiency virus envelope-specific B cells from patients with broadly cross-neutralizing antibodies. J Virol. 2009;83:188–99.PubMedCrossRefGoogle Scholar
  27. Duenas-Decamp MJ, Peters P, Burton D, Clapham PR. Natural resistance of human immunodeficiency virus type 1 to the CD4bs antibody b12 conferred by a glycan and an arginine residue close to the CD4 binding loop. J Virol. 2008;82:5807–14.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Edwards BM, Barash SC, Main SH, Choi GH, Minter R, Ullrich S, Williams E, DuFou L, Wilton J, Albert VR, et al. The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BLyS. J Mol Biol. 2003;334:103–18.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Frey G, Peng H, Rits-Volloch S, Morelli M, Cheng Y, Chen B. A fusion-intermediate state of HIV-1 gp41 targeted by broadly neutralizing antibodies. Proc Natl Acad Sci U S A. 2008;105:3739–44.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Garcia J, Dumy P, Rosen O, Anglister J. Stabilization of the biologically active conformation of the principal neutralizing determinant of HIV-1(IIIB) containing a cis-proline surrogate: 1H NMR and molecular modeling study. Biochemistry. 2006;45:4284–94.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Getzoff ED, Tainer JA, Lerner RA, Geysen HM. The chemistry and mechanism of antibody binding to protein antigens. Adv Immunol. 1988;43:1–98.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Go EP, Irungu J, Zhang Y, Dalpathado DS, Liao HX, Sutherland LL, et al. Glycosylation site-specific analysis of HIV envelope proteins (JR-FL and CON-S) reveals major differences in glycosylation site occupancy, glycoform profiles, and antigenic epitopes’ accessibility. J Proteome Res. 2008;7:1660–74.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Goh C-S, Milburn D, Gerstein M. Conformational changes associated with protein–protein interactions. Curr Opin Struct Biol. 2004;14:104–9.PubMedCrossRefGoogle Scholar
  34. Gorny MK, VanCott TC, Hioe C, Israel ZR, Michael NL, Conley AJ, et al. Human monoclonal antibodies to the V3 loop of HIV-1 with intra-and interclade cross-reactivity. J Immunol. 1997;159:5114–22.PubMedGoogle Scholar
  35. Gorny MK, Williams C, Volsky B, Revesz K, Cohen S, Polonis VR, Honnen WJ, Kayman SC, Krachmarov C, Pinter A, et al. Human monoclonal antibodies specific for conformation sensitive epitopes of V3 neutralize human immunodeficiency virus type 1 primary isolates from various clades. J Virol. 2002;76:9035–45.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gorny MK, Stamatatos L, Volsky B, Revesz K, Williams C, Wang XH, Cohen S, Staudinger R, Zolla-Pazner S. Identification of a new quaternary neutralizing epitope on human immunodeficiency virus type 1 virus particles. J Virol. 2005;79:5232–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gorny MK, Williams C, Volsky B, Revesz K, Wang XH, Burda S, Kimura T, Konings FA, Nádas A, Anyangwe CA, et al. Cross-clade neutralizing activity of human anti-V3 monoclonal antibodies derived from the cells of individuals infected with non-B clades of human immunodeficiency virus type. J Virol. 2006;80:6865–72.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gray ES, Taylor N, Wycuff D, Moore PL, Tomaras GD, Wibmer CK, et al. Antibody specificities associated with neutralization breadth in plasma from human immunodeficiency virus type 1 subtype C-infected blood donors. J Virol. 2009;83:8925–37.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hans D, Young PR, Fairlie DP. Current status of short synthetic peptides as vaccines. Med Chem. 2006;2:627–46.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hearty S, Conroy PJ, Ayyar BV, Byrne B, O’Kennedy R. Surface plasmon resonance for vaccine design and efficacy studies: recent applications and future trends. Expert Rev Vaccines. 2010;9:645–64.PubMedCrossRefGoogle Scholar
  41. Hioe CE, Wrin T, Seaman MS, Yu X, Wood B, Self S, et al. Anti-V3 monoclonal antibodies display broad neutralizing activities against multiple HIV-1 subtypes. PLoS One. 2010;5:e10254.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ho J, Uger RA, Zwick MB, Luscher MA, Barber BH, MacDonald KS. Conformational constraints imposed on a pan-neutralizing HIV-1 antibody epitope result in increased antigenicity but not neutralizing response. Vaccine. 2005;23:1559–73.  https://doi.org/10.1016/j.vaccine.2004.09.037.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hoxie JA. Toward an antibody-based HIV-1 vaccine. Annu Rev Med. 2010;61:135–52.PubMedCrossRefGoogle Scholar
  44. Huang CC, Tang M, Zhang MY, Majeed S, Montabana E, Stanfield RL, Dimitrov DS, Korber B, Sodroski J, Wilson IA, Wyatt R, Kwong PD. Structure of a V3-containing HIV-1 gp120 core. Science. 2005;310:1025–8.PubMedPubMedCentralCrossRefGoogle Scholar
  45. James LC, Roversi P, Tawfik DS. Antibody multi-specificity mediated by conformational diversity. Science. 2003;299:1362–7.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Javaherian K, Langlois AJ, McDanal C, Ross KL, Eckler LI, Jellis CL, Profy AT, Rusche JR, Bolognesi DP, Putney SD, et al. Principal neutralizing domain of the human immunodeficiency virus type 1 envelope protein. Proc Natl Acad Sci U S A. 1989;86:6768–72.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jimenez R, Salazar G, Baldridge KK, Romesberg FE. Flexibility and molecular recognition in the immune system. Proc Natl Acad Sci U S A. 2003;100:92–7.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Joyce JG, Hurni WM, Bogusky MJ, Garsky VM, Liang X, Citron MP, et al. Enhancement of alpha-helicity in the HIV-1 inhibitory peptide DP178 leads to an increased affinity for human monoclonal antibody 2F5 but does not elicit neutralizing responses in vitro. Implications for vaccine design. J Biol Chem. 2002;277:45811–20.  https://doi.org/10.1074/jbc.M205862200.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Julien JP, Bryson S, Nieva JL, Pai EF. Structural details of HIV-1 recognition by the broadly neutralizing monoclonal antibody 2F5: epitope conformation, antigen-recognition loop mobility, and anion-binding site. J Mol Biol. 2008;384:377–92.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Julien JP, Huarte N, Maeso R, Taneva SG, Cunningham A, Nieva JL, Pai EF. Ablation of the complementarity-determining region H3 apex of the anti-HIV-1 broadly neutralizing antibody 2F5 abrogates neutralizing capacity without affecting core epitope binding. J Virol. 2010;84:4136–47.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Karlsson-Hedestam GB, Fouchier RA, Phogat S, Burton DR, Sodroski J, Wyatt RT. The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nat Rev Microbiol. 2008;6:143–55.  https://doi.org/10.1038/nrmicro1819.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kayman SC, Wu Z, Revesz K, Chen H, Kopelman R, Pinter A. Presentation of native epitopes in the V1/V2 and V3 regions of human immunodeficiency virus type 1 gp120 by fusion glycoproteins containing isolated gp120 domains. J Virol. 1994;68:400–10.PubMedPubMedCentralGoogle Scholar
  53. Klatt NR, Chahroudi A, Silvestri G. Human immunodeficiency viruses: pathogenesis. In: Mahy BWJ, Van Regenmortel MHV, editors. Desk encyclopedia of human and medical virology. Oxford: Academic Press, Elsevier; 2010. p. 345–53.Google Scholar
  54. Krachmarov C, Pinter A, Honnen WJ, Gorny MK, Nyambi PN, Zolla-Pazner S, Kayman SC. Antibodies that are cross-reactive for human immunodeficiency virus type 1 clade A and clade B V3 domains are common in patient sera from Cameroon, but their neutralization activity is usually restricted by epitope masking. J Virol. 2005;79:780–90.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kwong PD, Wyatt R, Robinson J, Sweet RW, et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 1998;393:648–59.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Labrijn AF, Poignard P, Raja A, Zwick MB, Delgado K, Franti M, Binley J, Vivona V, Grundner C, Huang CC, Venturi M, Petropoulos CJ, Wrin T, Dimitrov DS, Robinson J, Kwong PD, Wyatt RT, Sodroski J, Burton DR. Access of antibody molecules to the conserved coreceptor binding site on glycoprotein gp120 is sterically restricted on primary human immunodeficiency virus type 1. J Virol. 2003;77:10557–65.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Leder L, Berger C, Bornhauser S, Wendt H, Ackermann F, Jelesarov I, et al. Spectroscopic, calorimetric, and kinetic demonstration of conformational adaptation in peptide-antibody recognition. Biochemistry. 1995;34:16509–18.PubMedCrossRefGoogle Scholar
  58. Li Y, Migueles SA, Welcher B, Svehla K, Phogat A, Louder MK, Wu X, Shaw GM, Connors M, Wyatt RT, Mascola JR. Broad HIV-1 neutralization mediated by CD4-binding site antibodies. Nat Med. 2007;13:1032–4.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Li Y, Svehla K, Louder MK, Wycuff D, Phogat S, Tang M, et al. Analysis of neutralization specificities in polyclonal sera derived from human immunodeficiency virus type 1-infected individuals. J Virol. 2009;83:1045–59.PubMedCrossRefGoogle Scholar
  60. Lifson JD, Rossio JL, Piatak M Jr, Bess J Jr, Chertova E, Schneider DK, et al. Evaluation of the safety, immunogenicity, and protective efficacy of whole inactivated simian immunodeficiency virus (SIV) vaccines with conformationally and functionally intact envelope glycoproteins. AIDS Res Hum Retrovir. 2004;20:772–87.PubMedCrossRefGoogle Scholar
  61. Liu J, Bartesaghi A, Borgnia MJ, Sapiro G, Subramaniam S. Molecular architecture of native HIV-1 gp120 trimers. Nature. 2008;455:109–13.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ma B, Shatsky M, Wolfson HJ, Nussinov R. Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci. 2002;11:184–97.PubMedPubMedCentralCrossRefGoogle Scholar
  63. McBurney SP, Ross TM. Human immunodeficiency virus-like particles with consensus envelopes elicited broader cell-mediated peripheral and mucosal immune responses than polyvalent and monovalent Env vaccines. Vaccine. 2009;27:4337–49.PubMedCrossRefGoogle Scholar
  64. McGaughey GB, Citron M, Danzeisen RC, Freidinger RM, Garsky VM, Hurni WM, et al. HIV-1 vaccine development: constrained peptide immunogens show improved binding to the anti-HIV-1 gp41 Mab. Biochemistry. 2003;42:3214–23.PubMedCrossRefGoogle Scholar
  65. Mester B, Manor R, Mor A, Arshava B, Rosen O, Ding FX, Naider F, Anglister J. HIV-1 peptide vaccine candidates: selecting constrained V3 peptides with highest affinity to antibody 447–52D. Biochemistry. 2009;48:7867–77.PubMedCrossRefGoogle Scholar
  66. Montefiori DC, Mascola JR. Neutralizing antibodies against HIV-1: can we elicit them with vaccines and how much do we need? Curr Opin HIV AIDS. 2009;4:347–51.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Montero M, van Houten NE, Wang X, Scott JK. The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol Mol Biol Rev. 2008;72:54–84.  https://doi.org/10.1128/MMBR.00020-07.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Moore JP, Ho DD. Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J Virol. 1993;67:863–75.PubMedPubMedCentralGoogle Scholar
  69. Moore PL, Crooks ET, Porter L, Zhu P, Cayanan CS, Grise H, et al. Nature of nonfunctional envelope proteins on the surface of human immunodeficiency virus type 1. J Virol. 2006;80:2515–28.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mor A, Segal E, Mester B, Arshava B, Rosen O, Ding FX, Russo J, Dafni A, Schvartzman F, Scherf T, et al. Mimicking the structure of the V3 epitope bound to HIV-1 neutralizing antibodies. Biochemistry. 2009;48:3288–303.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Morcock DR, Thomas JA, Gagliardi TD, Gorelick RJ, Roser JD, Chertova EN, et al. Elimination of retroviral infectivity by N-ethylmaleimide with preservation of functional envelope glycoproteins. J Virol. 2005;9:1533–42.CrossRefGoogle Scholar
  72. Muster T, Steindl F, Purtscher M, Trkola A, Klima A, Himmler G, Rüker F, Katinger H. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type1. J Virol. 1993;67:6642–7.PubMedPubMedCentralGoogle Scholar
  73. Muster T, Guinea R, Trkola A, Purtscher M, Klima A, Steindl F, et al. Cross-neutralizing activity against divergent human immunodeficiency virus type 1 isolates induced by the gp41 sequence ELDKWAS. J Virol. 1994;68:4031–4.PubMedPubMedCentralGoogle Scholar
  74. Nelson JD, Brunel FM, Jensen R, Crooks ET, Cardoso RMF, Wang M, Hessel A, Wilson IA, Zwick MB. An affinity-enhanced neutralizing antibody against the membrane-proximal external region of human immunodeficiency virus type 1 gp41 recognizes an epitope between those of 2F5 and 4E10. J Virol. 2007;81:4033–43.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Neurath AR, Rubin BA. Viral structural components as immunogens of prophylactic value. In: Monographs in virology. Basel: Karger; 1971. p. 88.Google Scholar
  76. Neurath AR, Strick N, Lin K, Jiang S. Multifaceted consequences of anti-gp41 monoclonal antibody 2F5 binding to HIV type 1 virions. AIDS Res Hum Retrovir. 1995;11:687–96.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Nieva JL, Apellaniz B, Huarte N, Lorizate M. A new paradigm in molecular recognition? Specific antibody binding to membrane-inserted HIV-1 epitopes. J Mol Recognit. 2011;24:642–6.PubMedCrossRefGoogle Scholar
  78. Notkins AL. Polyreactivity of antibody molecules. Trends Immunol. 2004;25:174–9.PubMedCrossRefGoogle Scholar
  79. Ofek G, Tang M, Sambor A, Katinger H, Mascola JR, Wyatt R, Kwong PD. Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. J Virol. 2004;78:10724–37.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Ofek G, McKee K, Yang Y, Yang ZY, Skinner J, Guenaga FJ, Wyatt R, Zwick MB, Nabel GJ, Mascola JR, Kwong PD. Relationship between antibody 2F5 neutralization of HIV-1 and hydrophobicity of its heavy chain third complementarity-determining region. J Virol. 2010b;84:2955–62.PubMedCrossRefGoogle Scholar
  81. Pantophlet R, Aguilar-Sino RO, Wrin T, Cavacini LA, Burton DR. Analysis of the neutralization breadth of the anti-V3 antibody F425-B4e8 and re-assessment of its epitope fine specificity by scanning mutagenesis. Virology. 2007;364:441–53.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Pantophlet R, Wrin T, Cavacini LA, Robinson JE, Burton DR. Neutralizing activity of antibodies to the V3 loop region of HIV-1 gp120 relative to their epitope fine specificity. Virology. 2008;381:251–60.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Parry NR, Barnett PV, Ouldridge EJ, Rowlands DJ, Brown F. Neutralizing epitopes of type O foot-and-mouth disease virus. II. Mapping three conformational sites with synthetic peptide reagents. J Gen Virol. 1989;70:1493–503.PubMedCrossRefGoogle Scholar
  84. Parry N, Fox G, Rowlands D, Brown F, Fry E, Acharya R, et al. Structural and serological evidence for a novel mechanism of antigenic variation in foot-and-mouth disease virus. Nature. 1990;347:569–72.PubMedCrossRefGoogle Scholar
  85. Pejchal R, Gach JS, Brunel FM, Cardoso RM, Stanfield RL, Dawson PE, et al. A conformational switch in human immunodeficiency virus gp41 revealed by the structures of overlapping epitopes recognized by neutralizing antibodies. J Virol. 2009;83:8451–62.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Phogat S, Svehla K, Tang M, Spadaccini A, Muller J, Mascola J, et al. Analysis of the human immunodeficiency virus type 1 gp41 membrane proximal external region arrayed on hepatitis B surface antigen particles. Virology. 2008;373:72–84.PubMedCrossRefGoogle Scholar
  87. Pinter A, Honnen WJ, He Y, Gorny MK, Zolla-Pazner S, Kayman SC. The V1/V2 domain of gp120 is a global regulator of the sensitivity of primary human immunodeficiency virus type 1 isolates to neutralization by antibodies commonly induced upon infection. J Virol. 2004;78:5205–15.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Poignard P, Moulard M, Golez E, Vivona V, Franti M, Venturini S, et al. Heterogeneity of envelope molecules expressed on primary human immunodeficiency virus type 1 particles as probed by the binding of neutralizing and non neutralizing antibodies. J Virol. 2003;77:353–65.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ponomarenko JV, Van Regenmortel MHV. B cell epitope prediction. In: Gu J, Bourne PE, editors. Structural bioinformatics. 2nd ed. Hoboken, NJ: John Wiley; 2009. p. 849–79.Google Scholar
  90. Poon B, Hsu JF, Gudeman V, Chen ISY, Grovit-Ferbas K. Formaldehyde-treated, heat-inactivated virions with increased human immunodeficiency virus type 1 env can be used to induce high-titer neutralizing antibody responses. J Virol. 2005b;79:10210–7.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Race E, Stein CA, Wigg MD, Baksh A, Addawe M, Frezza P, et al. A multistep procedure for the chemical inactivation of human immunodeficiency virus for use as an experimental vaccine. Vaccine. 1995;13:1567–75.PubMedCrossRefGoogle Scholar
  92. Ramsland PA, Guddat LW, Edmundson AB, Raison RL. Diverse binding site structures revealed in homology models of polyreactive immunoglobulins. J Comput Aided Mol Des. 1997;11:453–61.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Rappuoli R. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine. 2001;19:2688–91.PubMedCrossRefGoogle Scholar
  94. Raviv Y, Viard M, Bess JW Jr, Chertova E, Blumenthal R. Inactivation of retroviruses with preservation of structural integrity by targeting the hydrophobic domain of the viral envelope. J Virol. 2005;79:12394–400.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Rich RL, Myszka DG. Spying on HIV with SPR. Trends Microbiol. 2003;11:124–33.PubMedCrossRefGoogle Scholar
  96. Richalet-Secordel P, Zeder-Lutz G, Plaue S, Sommermeyer-Leroux G, Van Regenmortel MHV. Cross-reactivity of monoclonal antibodies to a chimeric V3 peptide of HIV-1 with peptide analogues studied by biosensor technology and ELISA. J Immunol Methods. 1994;176:221–34.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Rosen O, Chill J, Sharon M, Kessler N, Mester B, Zolla-Pazner S, Anglister J. Induced fit in HIV-neutralizing antibody complexes: evidence for alternative conformations of the gp120 V3 loop and the molecular basis for broad neutralization. Biochemistry. 2005;44:7250–77258.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Rossio JL, Esser MT, Suryanarayana K, Schneider DK, Bess JW Jr, Vasquez GM, et al. Inactivation of human immunodeficiency virus type 1 infectivity with preservation of conformational and functional integrity of virion surface proteins. J Virol. 1998;72:7992–8001.PubMedPubMedCentralGoogle Scholar
  99. Saphire EO, Montero M, Menendez A, van Houten NE, Irving MB, Pantophlet R, Zwick MB, Parren PWHI, Burton DR, Scott JK, Wilson IA. Crystal structure of a broadly neutralizing anti-HIV-1 antibody in complex with a peptide: mechanism of gp120 cross-reactivity. J Mol Biol. 2007;369:696–709.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sattentau QJ, Moore JP, Vignaux F, Traincard F, Poignard P. Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding. J Virol. 1993;67:7383–93.PubMedPubMedCentralGoogle Scholar
  101. Scheid JF, Mouquet H, Feldhahn N, Seaman MS, Velinzon K, Pietzsch J, Ott RG, Anthony RM, Zebroski H, Hurley A, et al. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature. 2009;458:636–40.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Scherer EM, Leaman DP, Zwick MB, McMichael AJ, Burton DR. Aromatic residues at the edge of the antibody combining site facilitate viral glycoprotein recognition through membrane interactions. Proc Natl Acad Sci U S A. 2010;107:1529–34.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Schief WR, Ban YE, Stamatatos L. Challenges for structure-based HIV vaccine design. Curr Opin HIV AIDS. 2009;4:431–40.PubMedCrossRefGoogle Scholar
  104. Schroer JA, Bender T, Feldmann T, Kim KJ. Mapping epitopes on the insulin molecule using monoclonal antibodies. Eur J Immunol. 1983;13:693–700.PubMedCrossRefGoogle Scholar
  105. Selvarajah S, Puffer B, Pantophlet R, Law M, Doms RW, Burton DR. Comparing antigenicity and immunogenicity of engineered gp120. J Virol. 2005;79:12148–63.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Sercarz EE, Berzofsky JA. Immunogenicity of protein antigens: repertoire and regulation, vol. 1 & 2. Boca Raton, FL: CRC Press; 1987.Google Scholar
  107. Serruto D, Serino L, Masignani V, Pizza M. Genome-based approaches to develop vaccines against bacterial pathogens. Vaccine. 2009;27:3245–50.PubMedCrossRefGoogle Scholar
  108. Sharon M, Kessler N, Levy R, Zolla-Pazner S, Goërlach M, Anglister J. Alternative conformations of HIV-1 V3 loops mimic β hairpins in chemokines, suggesting a mechanism for coreceptor selectivity. Structure. 2003;11:225–36.PubMedCrossRefGoogle Scholar
  109. Simek MD, Rida W, Priddy FH, Pung P, Carrow E, Laufer DS, Lehrman JK, Boaz M, Tarragona-Fiol T, Miiro G, Birungi J, Pozniak A, McPhee DA, Manigart O, Karita E, Inwoley A, Jaoko W, Dehovitz J, Bekker LG, Pitisuttithum P, Paris R, Walker LM, Poignard P, Wrin T, Fast PE, Burton DR, Koff WC. Human immunodeficiency virus type1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J Virol. 2009;83:7337–48.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Spear GR, Takefman DM, Sharpe S, Ghassemi M, Zolla-Pazner S. Antibodies to the HIV-1 V3 loop in serum from infected persons contribute a major proportion of immune effect or functions including complement activation, antibody binding, and neutralization. Virology. 1994;204:609–15.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Stamatatos L, Morris L, Burton DR, Mascola JR. Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine? Nat Med. 2009;15:866–70.  https://doi.org/10.1038/nm.1949.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Stanfield RL, Gorny MK, Williams C, Zolla-Pazner S, Wilson IA. Structural rationale for the broad neutralization of HIV-1 by human monoclonal antibody 447-52D. Structure. 2004;12:193–204.PubMedCrossRefGoogle Scholar
  113. Stiegler G, Kunert R, Purtscher M, Wolbank S, Voglauer R, Steindl F, et al. A potent cross-clade neutralizing human monoclonal antibody against a novel epitope on gp41 of human immuno-deficiency virus type 1. AIDS Res Hum Retrovir. 2001;17:1757–65.PubMedCrossRefGoogle Scholar
  114. Sun ZY, Oh KJ, Kim M, Yu J, Brusic V, Song L, et al. HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane. Immunity. 2008;28:52–63.PubMedCrossRefGoogle Scholar
  115. Tainer JA, Getzoff ED, Paterson Y, Olson AJ, Lerner RA. The atomic mobility component of protein antigenicity. Annu Rev Immunol. 1985;3:501–35.PubMedCrossRefGoogle Scholar
  116. Thali M, Olshevsky U, Furman C, Gabuzda D, Posner M, Sodroski J. Characterization of a discontinuous human immunodeficiency virus type 1 gp120 epitope recognized by a broadly reactive neutralizing human monoclonal antibody. J Virol. 1991;65:6188–93.PubMedPubMedCentralGoogle Scholar
  117. Timmerman P, Puijk WC, Meloen RH. Functional reconstruction and synthetic mimicry of a conformational epitope using CLIPS technology. J Mol Recognit. 2007;20:283–99.PubMedCrossRefGoogle Scholar
  118. Uversky VN, Oldfield CJ, Dunker AK. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit. 2005;18:343–84.PubMedCrossRefGoogle Scholar
  119. Van Cott TC, Bethke FR, Polonis VR, Gorny MK, Zolla-Pazner S, Redfield RR, Birx DL. Dissociation rate of antibody-gp120 binding interactions is predictive of V3-mediated neutralization of HIV-1. J Immunol. 1994;153:449–59.Google Scholar
  120. Van Cott TC, Polonis VR, Loomis LD, Michael NL, Nara PL, Birx DL. Differential role of V3-specific antibodies in neutralization assays involving primary and laboratory-adapted isolates of HIV type 1. AIDS Res Hum Retrovir. 1995a;11:1379–91.CrossRefGoogle Scholar
  121. Van Cott TC, Bethke FR, Burke DS, Redfield RR, Birx DL. Lack of induction of antibodies specific for conserved, discontinuous epitopes of HIV-1 envelope glycoprotein by candidate AIDS vaccines. J Immunol. 1995b;155:4100–10.Google Scholar
  122. Van Oss CJ. Hydrophobic, hydrophilic and other interactions in epitope-paratope binding. Mol Immunol. 1995;32:199–211.PubMedCrossRefGoogle Scholar
  123. Van Regenmortel, Plant virus serology MHV. Adv Virus Res. 1966;12:207–71.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Van Regenmortel MHV. The conformational specificity of viral epitopes. FEMS Microbiol Lett. 1992a;100:483–7.PubMedCrossRefGoogle Scholar
  125. Van Regenmortel MHV. From absolute to exquisite specificity. Reflections on the fuzzy nature of species, specificity and antigenic sites. J Immunol Methods. 1998;216:37–48.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Van Regenmortel MHV. Molecular dissection of protein antigens and the prediction of epitopes. In: Van Regenmortel MHV, Muller S, editors. Synthetic peptides as antigens. Amsterdam: Elsevier; 1999a. p. 1–78.Google Scholar
  127. Van Regenmortel MHV. Molecular design versus empirical discovery in peptide-based vaccines. Coming to terms with fuzzy recognition sites and ill-defined structure-function relationships in immunology. Vaccine. 1999b;18:216–21.  https://doi.org/10.1016/S0264-410X(99)00192-9.CrossRefPubMedPubMedCentralGoogle Scholar
  128. Van Regenmortel MHV. Reductionism and the search for structure-function relationships in antibody molecules. J Mol Recognit. 2002a;15:240–7.PubMedCrossRefGoogle Scholar
  129. Van Regenmortel MHV. Reductionism and complexity in molecular biology. EMBO J. 2004b;5:1016–20.CrossRefGoogle Scholar
  130. Van Regenmortel MHV. The contribution of optical biosensors to the analysis of structure-function relationships in proteins. In: Kamp RM, Calvette JJ, Choli-Papadopoulou T, editors. Methods in proteome and protein analysis. Berlin: Springer; 2004c. p. 93–101.CrossRefGoogle Scholar
  131. Van Regenmortel MHV. Immunoinformatics may lead to a reappraisal of the nature of B cell epitopes and of the feasibility of synthetic peptide vaccines. J Mol Recognit. 2006;19:183–7.PubMedCrossRefGoogle Scholar
  132. Van Regenmortel MHV. Synthetic peptide vaccines and the search for neutralization of B cell epitopes. Open Vaccine J. 2009a;2:33–44.  https://doi.org/10.2174/1875035401002010033.CrossRefGoogle Scholar
  133. Van Regenmortel MHV. What is a B cell epitope? In: Reineke U, Schutkowski M, editors. Methods in molecular biology, epitope mapping protocols, vol. 524. New York: Humana Press; 2009b. p. 3–20.CrossRefGoogle Scholar
  134. Van Regenmortel MHV. Antigenicity and immunogenicity of viral proteins. In: Mahy BWJ, Van Regenmortel MHV, editors. Desk encyclopedia of general virology. Oxford: Academic press, Elsevier; 2010. p. 343–9.Google Scholar
  135. Van Regenmortel MHV, Muller S. Synthetic peptides as antigens. Amsterdam: Elsevier; 1999. p. 1–381.Google Scholar
  136. Weliky DP, Bennett AE, Zvi A, Anglister J, Steinbach PJ, Tycko R. Solid-state NMR evidence for an antibody-dependent conformation of the V3 loop of HIV-1 gp120. Nat Struct Biol. 1999;6:141–5.PubMedCrossRefGoogle Scholar
  137. Westhof E, Altschuh D, Moras D, Bloomer AC, Mondragon A, Klug A, Van Regenmortel MHV. Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature. 1984;311:123–6.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Willey S, Aasa-Chapman MM. Humoral immunity to HIV-1: neutralisation and antibody effector functions. Trends Microbiol. 2008;16:596–604.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Wilson IA, Stanfield RL. Antibody-antigen interactions: new structures and new conformational changes. Curr Opin Struct Biol. 1994;4:857–67.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Wu L, Zhou T, Yang ZY, Svehla K, O’Dell S, Louder MK, et al. Enhanced exposure of the CD4-binding site to neutralizing antibodies by structural design of a membrane-anchored human immunodeficiency virus type 1 gp120 domain. J Virol. 2009;83:5077–86.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR, Seaman MS, Zhou T, Schmidt SD, Wu L, Xu L, et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science. 2010;329:856–61.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science. 1998;280:1885–8.CrossRefGoogle Scholar
  143. Wyatt R, Kwong PD, Desjardins E, Sweet RW, Robinson J, Hendrickson WA, Sodroski JG. The antigenic structure of the HIV gp120 envelope glycoprotein. Nature. 1998;393:705–11.PubMedCrossRefGoogle Scholar
  144. Xu H, Song L, Kim M, Holmes MA, Kraft Z, Sellhorn G, et al. Interactions between lipids and human anti-HIV antibody 4E10 can be reduced without ablating neutralizing activity. J Virol. 2010;84:1076–84.PubMedCrossRefGoogle Scholar
  145. Young KR, McBurney SP, Karkhanis LU, Ross TM. Virus-like particles: designing an effective AIDS vaccine. Methods. 2006;40:98–117.PubMedCrossRefGoogle Scholar
  146. Yuan W, Li X, Kasterka M, Gorny MK, Zolla-Pazner S, Sodroski J. Oligomer-specific conformations of the human immunodeficiency virus (HIV-1) gp41 envelope glycoprotein ectodomain recognized by human monoclonal antibodies. AIDS Res Hum Retrovir. 2009;25:319–28.PubMedCrossRefGoogle Scholar
  147. Zeder-Lutz G, Benito A, Van Regenmortel MHV. Active concentration measurements of recombinant biomolecules using biosensor technology. J Mol Recognit. 1999;12:300–9.PubMedCrossRefGoogle Scholar
  148. Zhou T, Xu L, Dey B, Hessell AJ, VanRyk D, Xiang SH, Yang X, Zhang MY, Zwick MB, Arthos J, Burton DR, Dimitrov DS, Sodroski J, Wyatt R, Nabel GJ, Kwong PD. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature. 2007c;445:732–7.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zhu P, Winkler H, Chertova E, Taylor KA, Roux KH. Cryoelectron tomography of HIV-1 envelope spikes: further evidence for tripod-like legs. PLoS Pathog. 2008b;4:e1000203.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Zolla-Pazner S. Identifying epitopes of HIV-1 that induce protective antibodies. Nat Rev Immunol. 2004;4:199–210.CrossRefPubMedPubMedCentralGoogle Scholar
  151. Zwick MB. The membrane-proximal external region of HIV-1 gp41: a vaccine target worth exploring. AIDS. 2005;19:1725–37.PubMedCrossRefGoogle Scholar
  152. Zwick MB, Burton DR. HIV-1 neutralization: mechanisms and relevance to vaccine design. Curr HIV Res. 2007;5:608–24.PubMedCrossRefGoogle Scholar
  153. Zwick MB, Wang M, Poignard P, Stiegler G, Katinger H, Burton DR, et al. Neutralization synergy of human immunodeficiency virus type 1 primary isolates by cocktails of broadly neutralizing antibodies. J Virol. 2001b;75:12198–208.  https://doi.org/10.1128/JVI.75.24.12198-12208.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  154. Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, Binley JM, et al. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol. 2001c;75:10892–905.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Zwick MB, Parren PW, Saphire EO, Church S, Wang M, Scott JK, Dawson PE, Wilson IA, Burton DR. Molecular features of the broadly neutralizing immunoglobulin G1 b12 required for recognition of human immunodeficiency virus type 1 gp120. J Virol. 2003a;77:5863–76.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Zwick MB, Komori HK, Stanfield RL, Church S, Wang M, Parren PW, et al. The long third complementarity-determining region of the heavy chain is important in the activity of the broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2F5. J Virol. 2004;78:3155–61.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marc H V Van Regenmortel
    • 1
  1. 1.School of BiotechnologyUniversity of StrasbourgIllkirchFrance

Personalised recommendations