Very True Operators on Quasi-pseudo-MV Algebras

  • Guoqing Yang
  • Wenjuan ChenEmail author
  • Anran Chen
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1074)


In this paper, we introduce the notion of very true operator on a quasi-pseudo-MV algebra (qpMV-algebra, for short) and investigate the new algebraic structure qpMV\(_{vt}\)-algebra which will generalize psMV\(_{vt}\)-algebra defined in [10]. First we discuss some properties of very true operator on a qpMV-algebra. Next we define the dual notion very false operator on a qpMV-algebra and prove that there exists a one-to-one correspondence between very true operators and very false operators on any qpMV-algebra. Finally, some cases of qpMV\(_{vt}\)-algebras with truth-depressing hedges are given.


Very true operators Quasi-pseudo-MV algebras qpMV\(_{vt}\)-algebras 


  1. 1.
    Botur, M., Svrcek, F.: Very true on CBA fuzzy logic. Math. Slovaca. 60(4), 435–446 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chajda, I., Kolarik, M.: Very true operators in effect algebras. Soft. Comput. 16(7), 1213–1218 (2012)CrossRefGoogle Scholar
  3. 3.
    Chen, W.J., Dudek, W.A.: Quantum computational algebra with a non-commutative generalization. Math. Slovaca. 66(1), 1–16 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, W.J., Davvaz, B.: Some classes of quasi-pseudo-MV algebras. Logic J. IGPL. 24(5), 655–673 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, W.J., Dudek, W.A.: Ideals and congruences in quasi-pseudo-MV algebras. Soft. Comput. 22(12), 3879–3889 (2018)CrossRefGoogle Scholar
  6. 6.
    Ciungu, L.C.: Very true pseudo-BCK algebras. Soft Comput. (2019).
  7. 7.
    Georgescu, G., Iorgulescu, A.: Pseudo MV algebras. Mult.-Valued Log. 6, 95–135 (2001)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hajek, P.: On very true. Fuzzy Sets Syst. 124, 329–333 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ledda, A., Konig, M., Paoli, F., Giuntini, R.: MV algebras and quantum computation. Studia Log. 82, 245–270 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Leustean, I.: Non-commutative Lukasiewicz propositional logic. Arch. Math. Logic 45, 191–213 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Liu, J.M., Chen, W.J.: A non-communicative generalization of quasi-MV algebras. In: 2016 IEEE International Conference on Fuzzy Systems, pp. 122–126. FUZZ-IEEE (2016)Google Scholar
  12. 12.
    Rachunek, J., Salounova, D.: Truth values on generalizations of some commutative fuzzy structures. Fuzzy Sets Syst. 157, 3159–3168 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Vychodil, V.: Truth-depressing hedges and BL-logic. Fuzzy Sets Syst. 157, 2074–2090 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, J.T., Xin, X.L., Jun, Y.B.: Very true operators on equality algebras. J. Comput. Anal. Appl. 24(3) (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of JinanJinanChina
  2. 2.College of Science and EngineeringUniversity of MinnesotaTwin CitiesUSA

Personalised recommendations