Advertisement

Exact Solutions for \((2+1)\)–Dimensional Nonlinear Schrödinger Schrodinger Equation Based on Modified Extended tanh Method

  • Mei Xiong
  • Longwei ChenEmail author
  • Chaochao Li
  • Juan Wang
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1074)

Abstract

A modified extended tanh method is used to construct more general exactsolutions of a (2+1)-dimensional nonlinear Schrödinger equation by traveling wave map, and the partial differential is changed into complex algebraic equations. With the aid of Maple and Matlab software, we obtain some exact explicit solutions, such as kink wave solutions, peakon wave solutions, periodic wave solutions and their images.

Notes

Acknowledgements

The authors gratefully acknowledges the support of the Yunnan Tobacco Company’s science and technology project “Research on Data Resource Mining Based on Multi-objective Decision Making”.

References

  1. 1.
    Gray, P., Scott, S.: Chemical Oscillations and Instabilities. Clarendon Press, Oxford (1990)Google Scholar
  2. 2.
    Murray, J.: Mathematical Biology. Springer, Berlin (1989)CrossRefGoogle Scholar
  3. 3.
    Dingjiang, H., Desheng, L., Hongqing, Z.: Explicit and exact travelling wave solutions for the generalized derivative Schrödinger equation. Chaos, Solitons Fractals 31, 586–593 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Vakhnenko, V.O., Parkes, E.J., Morrison, A.J.: A Bäcklund transformation and the inverse scattering transform method for the generalized Vakhnenko equation. Chaos, Solitons Fractals 17(4), 683–692 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Yomba, E.: The extended Fans sub-equation method and its application to KDV-mKDV BKK and variant Boussinesq equation. Phys. Lett. A336, 463–476 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Matveev, V.A., Salle, M.A.: Darboux Transformation and Solitons. Springer, Berlin (2001)zbMATHGoogle Scholar
  7. 7.
    Khuri, S.A.: A complex tanh-function method applied to nonlinear equations of Schrödinger type. Chaos, Solitons Fractals 20, 1037–1040 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kavitha, L., Akila, N., Prabhu, A., Kuzmanovska-Barandovska, O., Gopi, D.: Exact solitary solutions of an inhomogeneneous modified nonlinear Schrödinger equation with competing nonlinearities. Math. Comput. Modell. 53, 1095–1110 (2011)CrossRefGoogle Scholar
  9. 9.
    Fan, E., Hon, Y.C.: Applications of extended tanh method to special types of nonlinear equations. Appl. Math. Comput. 141, 351–358 (2003)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Amer. J. Phys. 60(7), 650–654 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Malfliet, W.: The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations. J. Comput. Appl. Math. 164–165, 529–541 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wazwaz, A.-M.: The Camassa-Holm-KP equations with compact and noncompact travelling wave solutions. Appl. Math. Comput. 170, 347–360 (2005)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Wazwaz, A.-M.: The tanh and the sine-cosine methods for the complex modified KdV and the generalized KdV equations. Comput. Math. Appl. 49, 1101–1112 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wazwaz, A.-M.: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Appl. Math. Comput. 187, 1131–1142 (2007)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mei Xiong
    • 1
  • Longwei Chen
    • 1
    Email author
  • Chaochao Li
    • 1
  • Juan Wang
    • 1
  1. 1.College of Statistics and MathematicsYunnan University of Finance and EconomicsKunmingPeople’s Republic of China

Personalised recommendations