Advertisement

Interval Valued Generalised Fuzzy Soft Expert Set and Its Application

  • Chen BinEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1074)

Abstract

The purpose of this paper is to combine the work of interval-valued fuzzy sets and fuzzy soft expert sets, from which we can obtain a new concept: interval-valued generalised fuzzy soft expert sets. We also introduce some of its operations: complement, union, intersection and study their properties. Then, we use interval-valued generalised fuzzy soft expert sets to analyze a decision-making problem.

Keywords

Soft sets Fuzzy soft sets Interval-valued generalised fuzzy soft expert sets Decision making 

Notes

Acknowledgment

This paper is supported by the Project of Shandong Province Higher Educational Science and Technology Program 2016(J16LI08).

References

  1. 1.
    Molodtsov, D.: Soft set theory-first results. Comput. Math. Appl. 37, 19–31 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Maji, P.K., Biswas, R., Roy, A.R.: Soft set theory. Comput. Math. Appl. 45(4–5), 555–562 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Mustafa, H.I.: Soft rough approximation operators on a complete atomic boolean lattice. Math. Probl. Eng 2013, 11 (2013). Article ID 486321MathSciNetCrossRefGoogle Scholar
  4. 4.
    Jun, Y.B., Park, C.H.: Applications of soft sets in ideal theory of BCK/BC Ialgebras. Inf. Sci. 178, 2466–2475 (2008)zbMATHGoogle Scholar
  5. 5.
    Shabir, M., Naz, M.: On soft topological spaces. Comput. Math. Appl. 61, 1786–1799 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gunduz, C., Bayramov (Aras), S.: Some results on fuzzy soft topological spaces. Math. Probl. Eng. 2013, 10 (2013). Article ID 835308MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chen, B.: Soft semi-open sets and related properties in soft topological spaces. Appl. Math. Inf. Sci. 7(1), 287–294 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, B.: Some local properties of soft semi-open sets. Discrete Dyn. Nat. Soc. (2013). Article ID 298032Google Scholar
  9. 9.
    Maji, P.K., Roy, A.R., Biswas, R.: An application of soft sets in a decision making problem. Comput. Math. Appl. 44, 1077–1083 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chen, D., Tsang, E.C.C., Yeung, D.S., Wang, X.: The parameterization reduction of soft sets and its applications. Comput. Math. Appl. 49, 757–763 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Roy, A.R., Maji, P.K.: A fuzzy soft set theoretic approach to decision making problems. J. Comput. Appl. Math. 203, 412–418 (2007)CrossRefGoogle Scholar
  12. 12.
    Zou, Y., Xiao, Z.: Data analysis approaches of soft sets under incomplete information. Knowl. Based Syst. 21, 941–945 (2008)CrossRefGoogle Scholar
  13. 13.
    Kong, Z., Gao, L., Wang, L., Li, S.: The normal parameter reduction of soft sets and its algorithm. Comput. Math. Appl. 56, 3029–3037 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yang, X., Lin, T.Y., Yang, J., Li, Y., Yu, D.: Combination of interval-valued fuzzy set and soft set. Comput. Math. Appl. 58(3), 521–527 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Majumdar, P., Samanta, S.K.: Generalised fuzzy soft sets. Comput. Math. Appl. 59(4), 1425–1432 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Alkhazaleh, S., Salleh, A.R.: Soft expert sets. Adv. Decis. Sci. 2011, 12 (2011). Article ID 757868zbMATHGoogle Scholar
  17. 17.
    Alkhazaleh, S., Salleh, A.R.: Fuzzy soft expert sets. Ph.D. thesis, Faculty of Science and Technology, University Kebangsaan Malaysia, Selangor, Malaysia Google Scholar
  18. 18.
    Maji, P.K., Biswas, R., Roy, A.R.: Fuzzy soft sets. J. Fuzzy Math. 9, 589–602 (2001)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Gorzalczany, M.B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst. 21(1), 1–17 (1987)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Schweizer, B., Sklar, A.: Statistical metric space. Pac. J. Mathh. 10, 314–334 (1960) MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kalaiselvi, N., Hannah Inbarani, H.: Fuzzy soft set based classification for gene expression data. http://arxiv.org/abs/1301.1502
  22. 22.
    Handaga, B., Mat, M.: Similarity approach on fuzzy soft set based numerical data classification. In: ICSECS, Part II, CCIS, vol. 180, pp. 575–589 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of JinanJinanChina

Personalised recommendations