Advertisement

Operations over Linear Secret Sharing Schemes

  • Arkadii SlinkoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11836)

Abstract

A secret sharing scheme implemented in an organisation is designed to reflect the power structure in that organisation. When two organisations merge, this usually requires a number of substantial changes and, in particular, changes to their secret sharing schemes which have to be merged in the way which reflects a new role of each of the organisations.

This paper looks at the ways secret sharing scheme can be modified when organisational changes occur. We restrict ourselves with the class of ideal linear secret sharing schemes and describe how matrices of these linear schemes have to be modified when we take the sum, the product or the composition of two linear access structures.

Keywords

Secret sharing scheme Access structure Simple game Composition of access structures Dual access structure 

References

  1. 1.
    Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20901-7_2CrossRefGoogle Scholar
  2. 2.
    Beimel, A., Tassa, T., Weinreb, E.: Characterizing ideal weighted thresholdsecret sharing. SIAM J. Discret. Math. 22, 360–397 (2008)CrossRefGoogle Scholar
  3. 3.
    Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference, vol. 48, p 313 (1979)Google Scholar
  4. 4.
    Brickell, E.F.: A survey of hardware implementations of RSA. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 368–370. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_34CrossRefGoogle Scholar
  5. 5.
    Farràs, O., Martí-Farré, J., Padró, C.: Ideal multipartite secret sharing schemes. J. Cryptol. 25, 434–463 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Farràs, O., Padró, C.: Ideal hierarchical secret sharing schemes. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 219–236. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11799-2_14CrossRefGoogle Scholar
  7. 7.
    Hameed, A., Slinko, A.: A characterisation of ideal weighted secret sharing schemes. J. Math. Cryptol. 9, 227–244 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the Eighth Annual Structure in Complexity Theory Conference, pp. 102–111. IEEE (1993)Google Scholar
  9. 9.
    Márquez-Corbella, I., Martínez-Moro, E., Suárez-Canedo, E.: On the composition of secret sharing schemes related to codes. Discret. Math. Algorithms Appl. 6, 1450013 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Martin, K.: New secret sharing schemes from old. J. Comb. Math. Comb. Comput. 14, 65–77 (1993)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Martínez-Moro, E., Mozo-Fernández, J., Munuera, C.: Compounding secret sharing schemes. Australas. J. Comb. 30, 277–290 (2004)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Maurer, U.: Secure multi-party computation made simple. Discret. Appl. Math. 154, 370–381 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nikov, V., Nikova, S., Preneel, B.: Multi-party computation from any linear secret sharing scheme unconditionally secure against adaptive adversary: the zero-error case. In: Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 1–15. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45203-4_1CrossRefGoogle Scholar
  14. 14.
    Seymour, P.: A forbidden minor characterization of matroid ports. Q. J. Math. 27, 407–413 (1976)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Shapley, L.S.: Simple games: an outline of the descriptive theory. Behav. Sci. 7, 59–66 (1962)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Simmons, G.J.: How to (Really) share a secret. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 390–448. Springer, New York (1990).  https://doi.org/10.1007/0-387-34799-2_30CrossRefGoogle Scholar
  18. 18.
    Stinson, D.R.: An explication of secret sharing schemes. Des. Codes Crypt. 2, 357–390 (1992)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tassa, T.: Hierarchical threshold secret sharing. J. Cryptol. 20, 237–264 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Taylor, A., Zwicker, W.: Simple Games. Princeton University Press, Princeton (1999)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AucklandAucklandNew Zealand

Personalised recommendations