Advertisement

Applications

  • Anna Skripka
  • Anna Tomskova
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2250)

Abstract

In this chapter we discuss various results of operator theory, functional analysis, mathematical physics, and noncommutative geometry that rely on methods of multiple operator integration.

References

  1. 1.
    A. Abdessemed, E.B. Davies, Some commutator estimates in the Schatten classes. J. Lond. Math. Soc. 39, 299–308 (1989)MathSciNetzbMATHGoogle Scholar
  2. 2.
    V.M. Adamjan, H. Neidhardt, On the summability of the spectral shift function for pair of contractions and dissipative operators. J. Oper. Theory 24(1), 187–205 (1990)MathSciNetzbMATHGoogle Scholar
  3. 3.
    V.M. Adamjan, B.S. Pavlov, Trace formula for dissipative operators. Vestn. Leningr. Univ. Mat. Mekh. Astronom. 7(2), 5–9 (1979, in Russian)Google Scholar
  4. 4.
    A.B. Aleksandrov, V.V. Peller, Functions of operators under perturbations of class \({\mathcal {S}}^p\). J. Funct. Anal. 258(11), 3675–3724 (2010)Google Scholar
  5. 5.
    A.B. Aleksandrov, V.V. Peller, Operator Hölder-Zygmund functions. Adv. Math. 224(3), 910–966 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    A.B. Aleksandrov, V.V. Peller, Functions of perturbed dissipative operators. Algebra i Analiz 23(2), 9–51 (2011). Translation: St. Petersburg Math. J. 23(2), 209–238 (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    A.B. Aleksandrov, V.V. Peller, Trace formulae for perturbations of class Sm. J. Spectral Theory 1(1), 1–26 (2011)MathSciNetzbMATHGoogle Scholar
  8. 8.
    A.B. Aleksandrov, V.V. Peller, Estimates of operator moduli of continuity. J. Funct. Anal. 261, 2741–2796 (2011)MathSciNetzbMATHGoogle Scholar
  9. 9.
    A.B. Aleksandrov, V.V. Peller, Operator Lipschitz functions. Uspekhi Mat. Nauk 71(4(430)), 3–106 (2016, in Russian). Translation: Russ. Math. Surv. 71(4), 605–702 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    A.B. Aleksandrov, V.V. Peller, Krein’s trace formula for unitary operators and operator Lipschitz functions. Funct. Anal. Appl. 50(3) 167–175 (2016)MathSciNetzbMATHGoogle Scholar
  11. 11.
    A.B. Aleksandrov, V.V. Peller, Multiple operator integrals, Haagerup and Haagerup-like tensor products, and operator ideals. Bull. Lond. Math. Soc. 49, 463–479 (2017)MathSciNetzbMATHGoogle Scholar
  12. 12.
    A.B. Aleksandrov, V.V. Peller, Dissipative operators and operator Lipschitz functions. Proc. Am. Math. Soc. 147(5), 2081–2093 (2019)MathSciNetzbMATHGoogle Scholar
  13. 13.
    A.B. Aleksandrov, V.V. Peller, D. Potapov, F.A. Sukochev, Functions of normal operators under perturbations. Adv. Math. 226(6), 5216–5251 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    A.B. Aleksandrov, F.L. Nazarov, V.V. Peller, Functions of noncommuting self-adjoint operators under perturbation and estimates of triple operator integrals. Adv. Math. 295, 1–52 (2016)MathSciNetzbMATHGoogle Scholar
  15. 16.
    J. Arazy, Some remarks on interpolation theorems and the boundness of the triangular projection in unitary matrix spaces. Integr. Equ. Oper. Theory 1, 453–495 (1978)MathSciNetzbMATHGoogle Scholar
  16. 18.
    J. Arazy, L. Zelenko, Directional operator differentiability of non-smooth functions. J. Oper. Theory 55(1), 49–90 (2006)MathSciNetzbMATHGoogle Scholar
  17. 19.
    J. Arazy, T.J. Barton, Y. Friedman, Operator differentiable functions. Integr. Equ. Oper. Theory 13(4), 462–487 (1990)MathSciNetzbMATHGoogle Scholar
  18. 20.
    M.F. Atiyah, V.K. Patodi, I.M. Singer, Spectral asymmetry and Riemannian geometry. III. Math. Proc. Camb. Philos. Soc. 79(1), 71–99 (1976)MathSciNetzbMATHGoogle Scholar
  19. 21.
    P.J. Ayre, M.G. Cowling, F.A. Sukochev, Operator Lipschitz estimates in the unitary setting. Proc. Am. Math. Soc. 144(3), 1053–1057 (2016)MathSciNetzbMATHGoogle Scholar
  20. 22.
    N.A. Azamov, P.G. Dodds, F.A. Sukochev, The Krein spectral shift function in semifinite von Neumann algebras. Integr. Equ. Oper. Theory 55, 347–362 (2006)MathSciNetzbMATHGoogle Scholar
  21. 23.
    N.A. Azamov, A.L. Carey, F.A. Sukochev, The spectral shift function and spectral flow. Commun. Math. Phys. 276(1), 51–91 (2007)MathSciNetzbMATHGoogle Scholar
  22. 24.
    N.A. Azamov, A.L. Carey, P.G. Dodds, F.A. Sukochev, Operator integrals, spectral shift, and spectral flow. Can. J. Math. 61(2), 241–263 (2009)MathSciNetzbMATHGoogle Scholar
  23. 25.
    M.-T. Benameur, A.L. Carey, J. Phillips, A. Rennie, F.A. Sukochev, K.P. Wojciechowski, An analytic approach to spectral flow in von Neumann algebras, in Analysis, Geometry and Topology of Elliptic Operators (World Scientific Publishing, Hackensack, 2006), pp. 297–352zbMATHGoogle Scholar
  24. 26.
    G. Bennett, Unconditional convergence and almost everywhere convergence. Z. Wahrsch. Verw. Geb. 34(2), 135–155 (1976)MathSciNetzbMATHGoogle Scholar
  25. 27.
    G. Bennett, Schur multipliers. Duke Math. J. 44(3), 603–639 (1977)MathSciNetzbMATHGoogle Scholar
  26. 29.
    P.H. Bérard, Spectral Geometry: Direct and Inverse Problems. Lecture Notes in Mathematics, vol. 1207 (Springer, Berlin, 1986)Google Scholar
  27. 33.
    M.Sh. Birman, A.B. Pushnitski, Spectral shift function, amazing and multifaceted. Dedicated to the memory of Mark Grigorievich Krein (1907–1989). Integr. Equ. Oper. Theory 30(2), 191–199 (1998)MathSciNetzbMATHGoogle Scholar
  28. 36.
    M.S. Birman, M.Z. Solomyak, Double Stieltjes Operator Integrals III. Problems of Mathematical Physics, vol. 6 (Leningrad University, Leningrad, 1973, in Russian), pp. 27–53Google Scholar
  29. 37.
    M.S. Birman, M.Z. Solomyak, Remarks on the spectral shift function. J. Sov. Math. 3, 408–419 (1975)zbMATHGoogle Scholar
  30. 41.
    M.S. Birman, M.Z. Solomyak, Double operator integrals in a Hilbert space. Integr. Equ. Oper. Theory 47(2), 131–168 (2003)MathSciNetzbMATHGoogle Scholar
  31. 42.
    M.S. Birman, D.R. Yafaev, The spectral shift function. The papers of M. G. Krein and their further development. Algebra i Analiz 4(5), 1–44 (1992, in Russian). Translation: St. Petersburg Math. J. 4(5), 833–870 (1993)Google Scholar
  32. 44.
    R. Bonic, J. Frampton, Smooth functions on Banach manifolds. J. Math. Mech. 15(5), 877–898 (1966)MathSciNetzbMATHGoogle Scholar
  33. 45.
    A. Carey, J. Phillips, Unbounded Fredholm modules and spectral flow. Can. J. Math. 50(4), 673–718 (1998)MathSciNetzbMATHGoogle Scholar
  34. 46.
    A. Carey, J. Phillips, Spectral flow in Fredholm modules, eta invariants and the JLO cocycle. K-Theory 31(2), 135–194 (2004)MathSciNetzbMATHGoogle Scholar
  35. 47.
    R.W. Carey, J.D. Pincus, Mosaics, principal functions, and mean motion in von Neumann algebras. Acta Math. 138, 153–218 (1977)MathSciNetzbMATHGoogle Scholar
  36. 49.
    M. Caspers, D. Potapov, F. Sukochev, D. Zanin, Weak type commutator and Lipschitz estimates: resolution of the Nazarov-Peller conjecture. Am. J. Math. 141(3), 593–610 (2019)MathSciNetzbMATHGoogle Scholar
  37. 50.
    A. Chattopadhyay, A. Skripka, Trace formulas for relative Schatten class perturbations. J. Funct. Anal. 274, 3377–3410 (2018)MathSciNetzbMATHGoogle Scholar
  38. 52.
    C. Coine, Perturbation theory and higher order \({\mathcal {S}}^p\)-differentiability of operator functions (2019). arXiv:1906.05585Google Scholar
  39. 53.
    C. Coine, C. Le Merdy, D. Potapov, F. Sukochev, A. Tomskova, Resolution of Peller’s problem concerning Koplienko-Neidhardt trace formula. Proc. Lond. Math. Soc. (3) 113(2), 113–139 (2016)MathSciNetzbMATHGoogle Scholar
  40. 54.
    C. Coine, C. Le Merdy, D. Potapov, F. Sukochev, A. Tomskova, Peller’s problem concerning Koplienko-Neidhardt trace formula: the unitary case. J. Funct. Anal. 271(7), 1747–1763 (2016)MathSciNetzbMATHGoogle Scholar
  41. 55.
    C. Coine, C. Le Merdy, A. Skripka, F. Sukochev, Higher order \({\mathcal {S}}^2\)-differentiability and application to Koplienko trace formula. J. Funct. Anal. 276(10), 3170–3204 (2019)Google Scholar
  42. 57.
    A. Connes, Noncommutative Geometry (Academic, San Diego, 1994)zbMATHGoogle Scholar
  43. 58.
    A. Connes, D. Sullivan, N. Teleman, Quasiconformal mappings, operators on Hilbert space, and local formulae for characteristic classes. Topology 33(4), 663–681 (1994)MathSciNetzbMATHGoogle Scholar
  44. 60.
    H.G. Dales, Banach Algebras and Automatic Continuity. Mathematical Society Monographs (Oxford University Press, London, 2000)zbMATHGoogle Scholar
  45. 61.
    Yu.L. Daletskii, S.G. Krein, Integration and differentiation of functions of Hermitian operators and application to the theory of perturbations. Trudy Sem. Functsion. Anal. Voronezh. Gos. Univ. 1, 81–105 (1956, in Russian)Google Scholar
  46. 62.
    E.B. Davies, Lipschitz continuity of functions of operators in the Schatten classes. J. Lond. Math. Soc. 37, 148–157 (1988)MathSciNetzbMATHGoogle Scholar
  47. 63.
    B. de Pagter, F. Sukochev, Differentiation of operator functions in non-commutative Lp-spaces. J. Funct. Anal. 212(1), 28–75 (2004)MathSciNetzbMATHGoogle Scholar
  48. 67.
    J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, vol. 43 (Cambridge University Press, Cambridge, 1995)Google Scholar
  49. 69.
    P.G. Dodds, T.K. Dodds, B. de Pagter, Fully symmetric operator spaces. Integr. Equ. Oper. Theory 15(6), 942–972 (1992)MathSciNetzbMATHGoogle Scholar
  50. 70.
    P.G. Dodds, T.K. Dodds, B. de Pagter, F.A. Sukochev, Lipschitz continuity of the absolute value and Riesz projections in symmetric operator spaces. J. Funct. Anal. 148(1), 28–69 (1997)MathSciNetzbMATHGoogle Scholar
  51. 73.
    K. Dykema, N.J. Kalton, Sums of commutators in ideals and modules of type II factors. Ann. Inst. Fourier (Grenoble) 55(3), 931–971 (2005)Google Scholar
  52. 74.
    K. Dykema, A. Skripka, Higher order spectral shift. J. Funct. Anal. 257, 1092–1132 (2009)MathSciNetzbMATHGoogle Scholar
  53. 75.
    K. Dykema, A. Skripka, Perturbation formulas for traces on normed ideals. Commun. Math. Phys. 325(3), 1107–1138 (2014)MathSciNetzbMATHGoogle Scholar
  54. 80.
    Yu.B. Farforovskaya, An example of a Lipschitz function of selfadjoint operators that yields a non-nuclear increase under a nuclear perturbation. J. Sov. Math. 4, 426–433 (1975, in Russian)Google Scholar
  55. 81.
    Yu.B. Farforovskaja, An estimate of the norm of |f(B) − f(A)| for selfadjoint operators A and B, Investigations on linear operators and theory of functions, VI. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 56, 143–162 (1976). J. Soviet Math. 14(2), 1133–1149 (1980, in Russian)Google Scholar
  56. 82.
    C.K. Fong, G.J. Murphy, Ideals and Lie ideals of operators. Acta Sci. Math. 51, 441–456 (1987)MathSciNetzbMATHGoogle Scholar
  57. 83.
    F. Gesztesy, A. Pushnitski, B. Simon, On the Koplienko spectral shift function. I. Basics. Zh. Mat. Fiz. Anal. Geom. 4(1), 63–107 (2008)MathSciNetzbMATHGoogle Scholar
  58. 84.
    E. Getzler, The odd Chern character in cyclic homology and spectral flow. Topology 32(3), 489–507 (1993)MathSciNetzbMATHGoogle Scholar
  59. 85.
    I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs, vol. 18 (American Mathematical Society, Providence, 1969)Google Scholar
  60. 88.
    F. Hiai, Matrix analysis: matrix monotone functions, matrix means and majorization. Interdiscip. Inf. Sci. 16(2), 139–248 (2010)MathSciNetzbMATHGoogle Scholar
  61. 92.
    S. Janson, T.H. Wolff, Schatten classes and commutators of singular integral operators. Ark. Mat. 20(2), 301–310 (1982)MathSciNetzbMATHGoogle Scholar
  62. 93.
    B.E. Johnson, J.P. Williams, The range of normal derivations. Pac. J. Math. 58, 105–122 (1975)MathSciNetzbMATHGoogle Scholar
  63. 94.
    M. Junge, Z-J. Ruan, Q. Xu, Rigid \(\mathcal {O}\mathcal {L}_p\) structures of non-commutative Lp-spaces associated with hyperfinite von Neumann algebras. Math. Scand. 96, 63–95 (2005)MathSciNetzbMATHGoogle Scholar
  64. 99.
    T. Kato, Continuity of the map S↦|S| for linear operators. Proc. Jpn. Acad. 49, 157–160 (1973)MathSciNetzbMATHGoogle Scholar
  65. 100.
    T. Kato, Perturbation Theory for Linear Operators. Classics in Mathematics (Springer, Berlin, 1995)zbMATHGoogle Scholar
  66. 102.
    E. Kissin, V.S. Shulman, On the range inclusion of normal derivations: variations on a theme by Johnson, Williams and Fong. Proc. Lond. Math. Soc. 83, 176–198 (2001)MathSciNetzbMATHGoogle Scholar
  67. 103.
    E. Kissin, V.S. Shulman, Classes of operator-smooth functions. II. Operator-differentiable functions. Integr. Equ. Oper. Theory 49(2), 165–210 (2004)zbMATHGoogle Scholar
  68. 104.
    E. Kissin, V.S. Shulman, Classes of operator-smooth functions. I. Operator-Lipschitz functions. Proc. Edinb. Math. Soc. 48, 151–173 (2005)zbMATHGoogle Scholar
  69. 105.
    E. Kissin, V.S. Shulman, Classes of operator-smooth functions. III Stable functions and Fuglede ideals. Proc. Edinb. Math. Soc. 48, 175–197 (2005)zbMATHGoogle Scholar
  70. 106.
    E. Kissin, V.S. Shulman, Lipschitz functions on Hermitian Banach *-algebras. Q. J. Math. 57, 215–239 (2006)MathSciNetzbMATHGoogle Scholar
  71. 107.
    E. Kissin, V.S. Shulman, On fully operator Lipschitz functions. J. Funct. Anal. 253(2), 711–728 (2007)MathSciNetzbMATHGoogle Scholar
  72. 108.
    E. Kissin, V.S. Shulman, Functions acting on symmetrically normed ideals and on the domains of derivations on these ideals. J. Oper. Theory 57(1), 63–82 (2007)MathSciNetzbMATHGoogle Scholar
  73. 109.
    E. Kissin, V.S. Shulman, L.B. Turowska, Extension of operator Lipschitz and commutator bounded functions. Oper. Theory Adv. Appl. 171, 225–244 (2006)MathSciNetzbMATHGoogle Scholar
  74. 110.
    E. Kissin, D. Potapov, V. Shulman, F. Sukochev, Operator smoothness in Schatten norms for functions of several variables: Lipschitz conditions, differentiability and unbounded derivations. Proc. Lond. Math. Soc. 108(3), 327–349 (2014)MathSciNetzbMATHGoogle Scholar
  75. 111.
    L.S. Koplienko, Trace formula for perturbations of nonnuclear type. Sibirsk. Mat. Zh. 25, 62–71 (1984, in Russian). Translation: Siberian Math. J. 25, 735–743 (1984)Google Scholar
  76. 112.
    H. Kosaki, Applications of uniform convexity of noncommutative Lp-spaces. Trans. Am. Math. Soc. 283(1), 265–282 (1984)zbMATHGoogle Scholar
  77. 113.
    M.G. Krein, On a trace formula in perturbation theory. Mat. Sbornik 33, 597–626 (1953, in Russian)Google Scholar
  78. 114.
    M.G. Krein, On the perturbation determinant and the trace formula for unitary and self-adjoint operators. Dokl. Akad. Nauk SSSR 144, 268–271 (1962, in Russian). Translation: Soviet Math. Dokl. 3, 707–710 (1962)Google Scholar
  79. 115.
    M.G. Krein, Some new studies in the theory of perturbations of self-adjoint operators. 1964 First Mathematical Summer School, Part I, pp. 103–187 Izdat. “Naukova Dumka”, Kiev (1964, in Russian)Google Scholar
  80. 116.
    M.G. Krein, On perturbation determinants and a trace formula for certain classes of pairs of operators. J. Oper. Theory 17(1), 129–187 (1987, in Russian). Translation: Am. Math. Soc. Trans. 145(2), 39–84 (1989)Google Scholar
  81. 118.
    H. Langer, Eine Erweiterung der Spurformel der Stoërungstheorie. Math. Nachr. 30, 123–135 (1965, in German)MathSciNetzbMATHGoogle Scholar
  82. 119.
    C. Le Merdy, A. Skripka, Higher order differentiability of operator functions in Schatten norms. J. Inst. Math. Jussieu. https://doi.org/10.1017/S1474748019000033
  83. 120.
    I.M. Lifshits, On a problem of the theory of perturbations connected with quantum statistics. Uspehi Mat. Nauk (N.S.) 7(1(47)), 171–180 (1952, in Russian)Google Scholar
  84. 124.
    S. Lord, E. McDonald, F. Sukochev, D. Zanin, Quantum differentiability of essentially bounded functions on Euclidean space. J. Funct. Anal. 273(7), 2353–2387 (2017)MathSciNetzbMATHGoogle Scholar
  85. 127.
    K.A. Makarov, A. Skripka, M. Zinchenko, On perturbation determinant for antidissipative operators. Integr. Equ. Oper. Theory 81(3), 301–317 (2015)zbMATHGoogle Scholar
  86. 128.
    M.M. Malamud, H. Neidhardt, Trace formulas for additive and non-additive perturbations. Adv. Math. 274, 736–832 (2015)MathSciNetzbMATHGoogle Scholar
  87. 129.
    M.M. Malamud, H. Neidhardt, V.V. Peller, Analytic operator Lipschitz functions in the disk and a trace formula for functions of contractions. Funct. Anal. Appl. 51(3), 33–55 (2017)MathSciNetzbMATHGoogle Scholar
  88. 130.
    M.M. Malamud, H. Neidhardt, V.V. Peller, Absolute continuity of spectral shift. J. Funct. Anal. 276(5), 1575–1621 (2019)MathSciNetzbMATHGoogle Scholar
  89. 131.
    A. McIntosh, Counterexample to a question on commutators. Proc. Am. Math. Soc. 29, 337–340 (1971)MathSciNetzbMATHGoogle Scholar
  90. 134.
    H. Neidhardt, Scattering matrix and spectral shift of the nuclear dissipative scattering theory, in Operators in Indefinite Metric Spaces, Scattering Theory and Other Topics (Bucharest, 1985). Operator Theory Advances and Applications, vol. 24 (Birkhäuser, Basel, 1987), pp. 237–250Google Scholar
  91. 135.
    H. Neidhardt, Scattering matrix and spectral shift of the nuclear dissipative scattering theory II. J. Oper. Theory 19(1), 43–62 (1988)MathSciNetzbMATHGoogle Scholar
  92. 136.
    H. Neidhardt, Spectral shift function and Hilbert-Schmidt perturbation: extensions of some work of L.S. Koplienko. Math. Nachr. 138, 7–25 (1988)MathSciNetzbMATHGoogle Scholar
  93. 141.
    V.V. Peller, Hankel operators in the theory of perturbations of unitary and selfadjoint operators. Funktsional. Anal. i Prilozhen. 19(2), 37–51 (1985, in Russian). Translation: Funct. Anal. Appl. 19, 111–123 (1985)Google Scholar
  94. 143.
    V.V. Peller, Hankel operators in the perturbation theory of unbounded selfadjoint operators, in Analysis and Partial Differential Equations. Lecture Notes in Pure and Applied Mathematics, vol. 122 (Dekker, New York, 1990), pp. 529–544Google Scholar
  95. 144.
    V.V. Peller, Hankel Operators and their Applications. Springer Monographs in Mathematics (Springer, New York, 2003)zbMATHGoogle Scholar
  96. 145.
    V.V. Peller, An extension of the Koplienko-Neidhardt trace formulae. J. Funct. Anal. 221, 456–481 (2005)MathSciNetzbMATHGoogle Scholar
  97. 146.
    V.V. Peller, Multiple operator integrals and higher operator derivatives. J. Funct. Anal. 233(2), 515–544 (2006)MathSciNetzbMATHGoogle Scholar
  98. 147.
    V.V. Peller, Differentiability of functions of contractions, in Linear and Complex Analysis. American Mathematical Society Translations: Series 2, vol. 226, Advances in the Mathematical Sciences, vol. 63 (American Mathematical Society, Providence, 2009), pp. 109–131Google Scholar
  99. 148.
    V.V. Peller, The Lifshits-Krein trace formula and operator Lipschitz functions. Proc. Am. Math. Soc. 144(12), 5207–5215 (2016)zbMATHGoogle Scholar
  100. 149.
    V.V. Peller, Multiple operator integrals in perturbation theory. Bull. Math. Sci. 6, 15–88 (2016)MathSciNetzbMATHGoogle Scholar
  101. 150.
    J. Phillips, Self-adjoint Fredholm operators and spectral flow. Can. Math. Bull. 39(4), 460–467 (1996)MathSciNetzbMATHGoogle Scholar
  102. 151.
    J. Phillips, Spectral flow in type I and II factors – a new approach. Fields Inst. Commun. 17, 137–153 (1997). American Mathematical Society, ProvidenceGoogle Scholar
  103. 154.
    G. Pisier, Q. Xu, Non-commutativeLp-spaces. Handbook of the Geometry of Banach Spaces, vol. 2 (North-Holland, Amsterdam, 2003), pp. 1459–1517zbMATHGoogle Scholar
  104. 156.
    D. Potapov, F. Sukochev, Lipschitz and commutator estimates in symmetric operator spaces. J. Oper. Theory 59(1), 211–234 (2008)MathSciNetzbMATHGoogle Scholar
  105. 159.
    D. Potapov, F. Sukochev, Operator-Lipschitz functions in Schatten-von Neumann classes. Acta Math. 207(2), 375–389 (2011)MathSciNetzbMATHGoogle Scholar
  106. 160.
    D. Potapov, F. Sukochev, Koplienko spectral shift function on the unit circle. Commun. Math. Phys. 309, 693–702 (2012)MathSciNetzbMATHGoogle Scholar
  107. 161.
    D. Potapov, F. Sukochev, Fréchet differentiability of Sp norms. Adv. Math. 262, 436–475 (2014)MathSciNetzbMATHGoogle Scholar
  108. 162.
    D. Potapov, A. Skripka, F. Sukochev, On Hilbert-Schmidt compatibility. Oper. Matrices 7(1), 1–34 (2013)MathSciNetzbMATHGoogle Scholar
  109. 163.
    D. Potapov, A. Skripka, F. Sukochev, Spectral shift function of higher order. Invent. Math. 193(3), 501–538 (2013)MathSciNetzbMATHGoogle Scholar
  110. 164.
    D. Potapov, A. Skripka, F. Sukochev, Spectral shift function of higher order for contractions. Proc. Lond. Math. Soc. 108(3), 327–349 (2014)MathSciNetzbMATHGoogle Scholar
  111. 165.
    D. Potapov, F. Sukochev, D. Zanin, Krein’s trace theorem revisited. J. Spectr. Theory 4(2), 415–430 (2014)MathSciNetzbMATHGoogle Scholar
  112. 166.
    D. Potapov, A. Skripka, F. Sukochev, Trace formulas for resolvent comparable operators. Adv. Math. 272, 630–651 (2015)MathSciNetzbMATHGoogle Scholar
  113. 167.
    D. Potapov, F. Sukochev, A. Usachev, D. Zanin, Singular traces and perturbation formulae of higher order. J. Funct. Anal. 269(5), 1441–1481 (2015)MathSciNetzbMATHGoogle Scholar
  114. 168.
    D. Potapov, A. Skripka, F. Sukochev, Functions of unitary operators: derivatives and trace formulas. J. Funct. Anal. 270(6), 2048–2072 (2016)MathSciNetzbMATHGoogle Scholar
  115. 169.
    D. Potapov, A. Skripka, F. Sukochev, A. Tomskova, Multilinear Schur multipliers and applications to operator Taylor remainders. Adv. Math. 320, 1063–1098 (2017)MathSciNetzbMATHGoogle Scholar
  116. 170.
    D. Potapov, F. Sukochev, A. Tomskova, D. Zanin, Fréchet differentiability of the norm of Lp-spaces associated with arbitrary von Neumann algebras. Trans. Am. Math. Soc. 371(11), 7493–7532 (2019)zbMATHGoogle Scholar
  117. 171.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn. (Academic, New York, 1980)Google Scholar
  118. 172.
    R. Rochberg, S. Semmes, Nearly weakly orthonormal sequences, singular value estimates, and Calderon-Zygmund operators. J. Funct. Anal. 86(2), 237–306 (1989)MathSciNetzbMATHGoogle Scholar
  119. 173.
    J. Rozendaal, F. Sukochev, A. Tomskova, Operator Lipschitz functions on Banach spaces. Stud. Math. 232(1), 57–92 (2016)MathSciNetzbMATHGoogle Scholar
  120. 175.
    A.V. Rybkin, The spectral shift function for a dissipative and a selfadjoint operator, and trace formulas for resonances. Mat. Sb. (N.S.) 125(167)(3), 420–430 (1984, in Russian)Google Scholar
  121. 176.
    A.V. Rybkin, A trace formula for a contractive and a unitary operator. Funktsional. Anal. i Prilozhen. 21(4), 85–87 (1987, in Russian)Google Scholar
  122. 179.
    A.V. Rybkin, On A-integrability of the spectral shift function of unitary operators arising in the Lax-Phillips scattering theory. Duke Math. J. 83(3), 683–699 (1996)MathSciNetzbMATHGoogle Scholar
  123. 180.
    L.A. Sahnovic̆, Dissipative operators with absolutely continuous spectrum. Trudy Moskov. Mat. Obs̆c̆. 19, 211–270 (1968, in Russian)Google Scholar
  124. 181.
    J.T. Schwartz, Nonlinear Functional Analysis (Gordon and Breach Science Publishers, New York, 1969)zbMATHGoogle Scholar
  125. 182.
    V.S. Shulman, Some remarks on Fuglede-Weiss theorem. Bull. Lond. Math. Soc. 28, 385–392 (1996)MathSciNetzbMATHGoogle Scholar
  126. 183.
    B. Simon, Trace Ideals and Their Applications. Mathematical Surveys and Monographs, 2nd edn., vol. 120 (American Mathematical Society, Providence, 2005)Google Scholar
  127. 184.
    A. Skripka, On properties of the ξ-function in semi-finite von Neumann algebras. Integr. Equ. Oper. Theory 62(2), 247–267 (2008)MathSciNetzbMATHGoogle Scholar
  128. 185.
    A. Skripka, Trace inequalities and spectral shift. Oper. Matrices 3(2), 241–260 (2009)MathSciNetzbMATHGoogle Scholar
  129. 186.
    A. Skripka, Higher order spectral shift, II. Unbounded case. Indiana Univ. Math. J. 59(2), 691–706 (2010)MathSciNetzbMATHGoogle Scholar
  130. 187.
    A. Skripka, Multiple operator integrals and spectral shift. Illinois J. Math. 55(1), 305–324 (2011)MathSciNetzbMATHGoogle Scholar
  131. 188.
    A. Skripka, Taylor approximations of operator functions, in Operator Theory in Harmonic and Non-commutative Analysis. Operator Theory Advances and Applications, vol. 240 (Birkhäuser, Basel, 2014), pp. 243–256zbMATHGoogle Scholar
  132. 189.
    A. Skripka, Asymptotic expansions for trace functionals. J. Funct. Anal. 266(5), 2845–2866 (2014)MathSciNetzbMATHGoogle Scholar
  133. 190.
    A. Skripka, Trace formulas for multivariate operator functions. Integr. Equ. Oper. Theory 81(4), 559–580 (2015)MathSciNetzbMATHGoogle Scholar
  134. 191.
    A. Skripka, Estimates and trace formulas for unitary and resolvent comparable perturbations. Adv. Math. 311, 481–509 (2017)MathSciNetzbMATHGoogle Scholar
  135. 192.
    A. Skripka, On positivity of spectral shift functions. Linear Algebra Appl. 523, 118–130 (2017)MathSciNetzbMATHGoogle Scholar
  136. 193.
    A. Skripka, Taylor asymptotics of spectral action functionals. J. Oper. Theory 80(1), 113–124 (2018)MathSciNetzbMATHGoogle Scholar
  137. 194.
    A. Skripka, M. Zinchenko, Stability and uniqueness properties of Taylor approximations of matrix functions. Linear Algebra Appl. 582, 218–236 (2019)MathSciNetzbMATHGoogle Scholar
  138. 195.
    A. Skripka, M. Zinchenko, On uniqueness of higher order spectral shift functions. Stud. Math. (2019). https://doi.org//10.4064/sm181007-1-1
  139. 198.
    E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, no. 32 (Princeton University Press, Princeton, 1971)Google Scholar
  140. 199.
    V.V. Sten’kin, Multiple operator integrals. Izv. Vysš. Učebn. Zaved. Mat. 179(4), 102–115 (1977, in Russian)Google Scholar
  141. 201.
    K. Sundaresan, Smooth Banach spaces. Math. Ann. 173, 191–199 (1967)MathSciNetzbMATHGoogle Scholar
  142. 204.
    N. Tomczak-Jaegermann, On the Differentiability of the Norm in Trace ClassesSp. Séminaire Maurey-Schwartz 1974–1975: Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, Exp. No. XXII (Centre Math., École Polytech., Paris, 1975), 9 pp.Google Scholar
  143. 205.
    A. Tomskova, Representation of operator Taylor remainders via multilinear Schur multipliers, preprintGoogle Scholar
  144. 206.
    M. Terp, Lp-spaces Associated with von Neumann Algebras. Notes, Math. Institute (Copenhagen University, Copenhagen, 1981)Google Scholar
  145. 208.
    W. van Ackooij, B. de Pagter, F.A. Sukochev, Domains of infinitesimal generators of automorphism flows. J. Funct. Anal. 218(2), 409–424 (2005)MathSciNetzbMATHGoogle Scholar
  146. 211.
    G. Weiss, The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators, I. Trans. Am. Math. Soc. 246, 193–209 (1978)MathSciNetzbMATHGoogle Scholar
  147. 212.
    H. Widom, When are differentiable functions differentiable?, in Linear and Complex Analysis Problem Book, 199 Research Problems. Lecture Notes in Mathematics, vol. 1043 (Springer, Berlin, 1983), pp. 184–188Google Scholar
  148. 213.
    J.P. Williams, Derivation ranges: open problems, in Topics on Modern Operator Theory. Operator Theory: Advances and Applications, vol. 2 (Birkhäuser, Basel, 1981), pp. 319–329Google Scholar
  149. 214.
    D.R. Yafaev, Mathematical Scattering Theory. General Theory. Translations of Mathematical Monographs, vol. 105 (American Mathematical Society, Providence, 1992)Google Scholar
  150. 215.
    D.R. Yafaev, A trace formula for the Dirac operator. Bull. Lond. Math. Soc. 37(6), 908–918 (2005)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anna Skripka
    • 1
  • Anna Tomskova
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA
  2. 2.School of Computer Science and EngineeringInha University in TashkentTashkentUzbekistan

Personalised recommendations