Bioindicators of Soil Quality in Mixed Plantations of Eucalyptus and Leguminous Trees

  • Arthur Prudêncio de Araujo PereiraEmail author
  • Daniel Bini
  • Emanuela Gama Rodrigues
  • Maiele Cintra Santana
  • Elke Jurandy Bran Nogueira Cardoso


The introduction of N2-fixing trees in Eucalyptus forest systems is a recent strategy that can improve the ecosystem survival and promote a more sustainable environment. In these systems, there is a strong interconnection between the trees, due to a complex network of interactions between microorganisms, above- and belowground. These interactions result in innumerable biological functions and ecosystem services, which are essential for soil and plant health. Our aim was to explore the major bioindicators of soil quality in pure and mixed Eucalyptus grandis and Acacia mangium plantations. Our efforts focused on the applications, challenges, and recent results obtained in such plantations in Brazilian conditions. We also give details regarding nutrient cycling in the soil and litter interface, and its close relationship with carbon (C), nitrogen (N), and phosphorus (P) dynamics. We believe that holistic approaches that permit to explore the bioindicators in mixed-plant systems of high ecological value (Acacia) and high economic value (Eucalyptus) will be inevitable in the near future. Thus, we can improve important processes mediated by these bioindicators involved in the interactions, and we will take an important step towards overcoming the current resource constraints, combining increased productivity with the ecological intensification of forest plantations with environmental sustainability.


Soil ecology Ecosystem services Forest ecology Sustainability Soil quality 


  1. Adhikari K, Hartemink AE (2016) Linking soils to ecosystem services—a global review. Geoderma 262:101–111CrossRefGoogle Scholar
  2. Aggangan NS, Moon HK, Han SH (2010) Growth response of Acacia mangium Willd. seedlings to arbuscular mycorrhizal fungi and four isolates of the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch. New For 39(2):215–230CrossRefGoogle Scholar
  3. Augusto L, De Schrijver A, Vesterdal L, Smolander A, Prescott C, Ranger J (2015) Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol Rev 90:444–466CrossRefGoogle Scholar
  4. Bachega LR, Bouillet JP, Piccolo MC, Saint-André L, Bouvet JM, Nouvellon Y, Gonçalves JLM, Robin A, Laclau JP (2016) Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the home field advantage hypothesis. For Ecol Manag 359:33–43CrossRefGoogle Scholar
  5. Bahram M, Kohout P, Anslan S, Harend H, Abarenkov K, Tedersoo L (2016) Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J 10:885–896CrossRefGoogle Scholar
  6. Baldrian P (2017) Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 41:109–130PubMedGoogle Scholar
  7. Barreto PAB (2008) Activity, carbon and nitrogen of microbial biomass in eucalypt plantations in an age sequence. Rev Bras Cienc Solo 32:611–619CrossRefGoogle Scholar
  8. Bender SF, Wagg C, van der Heijden MGA (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31:440–452CrossRefGoogle Scholar
  9. Bini D, Santos CA, Bouillet JPP, Gonçalves JLM, Cardoso EJBN (2013a) Eucalyptus grandis and Acacia mangium in monoculture and intercropped plantations: evolution of soil and litter microbial and chemical attributes during early stages of plant development. Appl Soil Ecol 63:57–66.
  10. Bini D, Figueiredo AF, da Silva MCP, Vasconcellos RLF, Cardoso EJBN (2013b) Microbial biomass and activity in litter during the initial development of pure and mixed plantations of Eucalyptus grandis and Acacia mangium. Rev Bras Cienc Solo 37(1):76–85CrossRefGoogle Scholar
  11. Bini D, Santos CA, Silva MCP, Bonfim JA, Cardoso EJBN (2018) Intercropping Acacia mangium stimulates AMF colonization and soil phosphatase activity in Eucalyptus grandis. Sci Agric 75:102–110CrossRefGoogle Scholar
  12. Binkley D (1992) Mixtures of nitrogen-fixing and non-nitrogen-fixing tree species. In: Cannell MGR, Malcom DC, Robertson PA (eds) The ecology of mixed-species stands of trees. Blackwell Scientific Publications, Oxford, pp 99–123Google Scholar
  13. Bouillet JP, Laclau JP, Gonçalves JLM, Moreira MZMR, Trivelin PCO, Jourdan C, Silva EV, Piccolo MC, Tsai SM, Galiana A, Bouillet JP, Gonçalves JLM, Silva EV, Jourdan C, Cunha MCS, Moreira MZMR, Saint-André L, Maquère V, Nouvellon Y, Ranger J, Gonçalves JLM, Silva EV, Jourdan C, Cunha MCS, Moreira MZMR, Saint-André L, Maquere V, Nouvellon Y, Ranger J (2008). Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil. For Ecol Manag 255:3905–3917.
  14. Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Pulleman M (2018) Soil quality–a critical review. Soil Biol Biochem 120:105–125CrossRefGoogle Scholar
  15. Brady NC, Weil RR (2009) Elements of the Nature and Properties of Soils. 3rd Ed. Pearson Education, Upper Saddle River, NJ, USAGoogle Scholar
  16. Cardoso EJBN, Nogueira LR, Vasconcellos F, Bini D, Yumi M, Miyauchi H, Alcantara C, Roger P, Alves L, Paula AM, Nakatani AS, Vasconcellos RLF, Bini D, Miyauchi MYH, Santos CA, Alves PRL, Paula AM, Nakatani AS, Pereira JM, Nogueira MA (2013) Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci Agric 70:274–289CrossRefGoogle Scholar
  17. Chalk PM, Peoples MB, McNeill AM, Boddey RM, Unkovich MJ, Gardener MJ, Silva CF, Chen D (2014) Methodologies for estimating nitrogen transfer between legumes and companion species in agro-ecosystems: a review of 15N-enriched techniques. Soil Biol Biochem 73:10–21CrossRefGoogle Scholar
  18. Churchland C, Grayston SJ (2014) Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front Microbiol 5:1–20CrossRefGoogle Scholar
  19. Cole DW, Rapp M (1980) Elemental cycling in forested ecosystems. In: Dynamic properties of forest ecosystems. Cambridge University, Cambridge, pp 341–409Google Scholar
  20. Coleman DC, Whitman WB (2005) Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia 49:479–497CrossRefGoogle Scholar
  21. Crowther TW, Glick HB, Covey KR, Bettigole C, Maynard DS, Thomas SM, Smith JR, Hintler G, Duguid MC, Amatulli G, Tuanmu MN, Jetz W, Salas C, Stam C, Piotto D, Tavani R, Green S, Bruce G, Williams SJ, Wiser SK, Huber MO, Hengeveld GM, Nabuurs GJ, Tikhonova E, Borchardt P, Li CF, Powrie LW, Fischer M, Hemp A, Homeier J, Cho P, Vibrans AC, Umunay PM, Piao SL, Rowe CW, Ashton MS, Crane PR, Bradford MA (2015) Mapping tree density at a global scale. Nature 525:201–205CrossRefPubMedPubMedCentralGoogle Scholar
  22. Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. SSSA, Madison, pp 3–21CrossRefGoogle Scholar
  23. Doran JW, Parkin TB (1996) Quantitative indicators of soil quality: a minimum data set. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. SSSA, Madison, pp 25–37Google Scholar
  24. Drobnik T, Greiner L, Keller A, Grêt-Regamey A (2018) Soil quality indicators—from soil functions to ecosystem services. Ecol Indic 94:151–169CrossRefGoogle Scholar
  25. Eisenhauer N, Bowker MA, Grace JB, Powell JR (2015) From patterns to causal understanding: structural equation modeling (SEM) in soil ecology. Pedobiologia 58:65–72CrossRefGoogle Scholar
  26. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631CrossRefPubMedPubMedCentralGoogle Scholar
  27. Forrester DI, Bauhus J, Khanna PK (2004) Growth dynamics in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 193:81–95CrossRefGoogle Scholar
  28. Forrester DI, Bauhus J, Cowie AL (2005a) On the success and failure of mixed species tree plantations: lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 209:147–155CrossRefGoogle Scholar
  29. Forrester DI, Bauhus J, Cowie AL (2005b) Nutrient cycling in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. Can J For Res 35:2942–2950CrossRefGoogle Scholar
  30. Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manag 233:211–230CrossRefGoogle Scholar
  31. Frey B, Schüpp H (1993) A role of vesicular-arbuscular (VA) mycorrhizal fungi in facilitating interplant nitrogen transfer. Soil Biol Biochem 25:651–658CrossRefGoogle Scholar
  32. Gama-rodrigues AC, Barros NF (2002) Ciclagem de nutrientes em floresta natural e em plantios de eucalipto e de dandá no sudeste da Bahia, Brasil. R Árvore 26:193–207Google Scholar
  33. Gama-Rodrigues EF, Gama-Rodrigues AC (1999) Biomassa microbiana e ciclagem de nutrientes. In: Santos GA, Silva LS, Canellas LP, Camargo FAO (eds) Fundamentos da matéria orgânica do solo: Ecossistemas tropicais e subtropicais. Gênesis, Porto Alegre, pp 159–1704Google Scholar
  34. Gama-Rodrigues EF, Barros NF, Viana AP, Santos GA (2008) Microbial biomass and activity in soil and forest litter of eucalyptus plantations and native vegetation in Southeastern Brazil. Ver Bras Cienc Solo 32:1489–1499CrossRefGoogle Scholar
  35. Gama-Rodrigues EF, Gama-Rodrigues AC, Barros NF, Moço MKS (2011) The relationships between microbiological attributes and soil and litter quality in pure and mixed stands of native tree species in southeastern Bahia, Brazil. Can J Microbiol 895:887–895CrossRefGoogle Scholar
  36. Greiner L, Keller A, Grêt-Regamey A, Papritz A (2017) Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy 69:224–223CrossRefGoogle Scholar
  37. Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146CrossRefGoogle Scholar
  38. He XH, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531–567CrossRefGoogle Scholar
  39. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195CrossRefGoogle Scholar
  40. Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792CrossRefPubMedPubMedCentralGoogle Scholar
  41. Huang LF, Song LX, Xia XJ, Mao WH, Shi K, Zhou YH, Yu JQ (2013) Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J Chem Ecol 39:232–242CrossRefPubMedPubMedCentralGoogle Scholar
  42. Inagaki M, Kamo K, Miyamoto K, Titin J, Jamalung L, Lapongan J, Miura S (2011) Nitrogen and phosphorus retranslocation and N:P ratios of litterfall in three tropical plantations: luxurious N and efficient P use by Acacia mangium. Plant Soil 341:295–307CrossRefGoogle Scholar
  43. Jenkinson DS (1981) Microbial biomass in soil: measurement and turnover. Soil Biochem 5:415–471Google Scholar
  44. Jimu L, Kemler M, Mujuru L, Mwenje E (2017) Illumina DNA metabarcoding of Eucalyptus plantation soil reveals the presence of mycorrhizal and pathogenic fungi. Forestry Int J Forest Res 91(2):238–245CrossRefGoogle Scholar
  45. Kaschuk G, Alberton O, Hungria M (2010) Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability. Soil Biol Biochem 42(1):1–13CrossRefGoogle Scholar
  46. Khanna PK (1997) Comparison of growth and nutrition of young monocultures and mixed stands of Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 94:105–113CrossRefGoogle Scholar
  47. Kirilenko AP, Sedjo RA (2007) Climate change impacts on forestry. Proc Natl Acad Sci U S A 104:19697–19702CrossRefPubMedPubMedCentralGoogle Scholar
  48. Koutika LS, Mareschal L, Epron D (2016) Soil P availability under Eucalypt and acacia on Ferralic Arenosols, republic of the Congo. Geoderma 7(2):153–158CrossRefGoogle Scholar
  49. Laclau JP, Bouillet JP, Gonçalves JLM, Silva EV, Jourdan C, Cunha MCS, Moreira MR, Saint-André L, Maquere V, Nouvellon Y, Ranger J (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil. For Ecol Manag 255:3905–3917CrossRefGoogle Scholar
  50. Laclau JP, Ranger J, Gonçalves JLM, Maquère V, Krusche AV, M’Bou AT, Nouvellon Y, Saint-André L, Bouillet JP, Piccolo MC, Deleporte P (2010) Biogeochemical cycles of nutrients in tropical Eucalyptus plantations. Main features shown by intensive monitoring in Congo and Brazil. For Ecol Manag 259:1771–1785CrossRefGoogle Scholar
  51. Lal R (2014) Soil conservation and ecosystem services. Int Soil Water Conserv Res 2:36–47CrossRefGoogle Scholar
  52. Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7:5875–5895CrossRefGoogle Scholar
  53. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415CrossRefGoogle Scholar
  54. Lavelle P, Dugdale R, Scholes R, Berhe AA, Carpenter E, Codispoti L, Izac AM, Lemoalle J, Luizão F, Scholes M, Tréguer P, Ward B (2005) Nutrient cycling. In: Hassan RM, Scholes R, Neville A (eds) Millennium ecosystem assessment. Island Press, Washington, p 331Google Scholar
  55. Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi JP (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:S3–S15CrossRefGoogle Scholar
  56. Li ZA, Peng SL, Rae DJ, Zhou GY (2001) Litter decomposition and nitrogen mineralization of soils in subtropical plantation forests of southern China, with special attention to comparisons between legumes and non-legumes. Plant Soil 229:105–116CrossRefGoogle Scholar
  57. Liang C, Schimel JP, Jastrow JD (2017) The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2:1–6CrossRefGoogle Scholar
  58. Mariotte P, Mehrabi Z, Bezemer TM, De Deyn GB, Kulmatiski A, Drigo B, Veen GF, van der Heijden MGA, Kardol P (2017) Plant-soil feedback: bridging natural and agricultural sciences. Trends Ecol Evol 33:129–142CrossRefPubMedPubMedCentralGoogle Scholar
  59. May BM, Attiwill PM (2003) Nitrogen fixation by Acacia dealbata and changes in soil properties 5 years after mechanical disturbance or slash-burning following timber harvest. For Ecol Manag 181(3):339–355CrossRefGoogle Scholar
  60. Mendes-Filho PF, Vasconcellos RLF, Paula AM, Cardoso EJBN (2009) Evaluating the potential of forest species under “microbial management” for the restoration of degraded mining areas. Water Air Soil Pollut 208:79–89CrossRefGoogle Scholar
  61. Mercês E, Soares B, Silva IR, Barros NF, Teixeira RS (2016) Soil organic matter fractions under second-rotation Eucalyptus plantations in eastern Rio Grande do Sul. Rev Árvore 41(1).
  62. Motavalli PP, Palm CA, Parton WJ, Elliott ET, Frey SD (1995) Soil pH and organic C dynamics in tropical forest soils: Evidence from laboratory and simulation studies. Soil Biol Biochem 27:1589–1599CrossRefGoogle Scholar
  63. Navarrete AA, Tsai SM, Mendes LW, Faust K, Hollander M, Cassman NA, Raes J, Veen JA, Kuramae EE (2015) Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol Ecol 24:2433–2448CrossRefPubMedPubMedCentralGoogle Scholar
  64. Nygren P, Fernández M, Harmand JM, Leblanc H (2012) Symbiotic dinitrogen fixation by trees: an underestimated resource in agroforestry systems? Nutr Cycl Agroecosyst 94:123–160CrossRefGoogle Scholar
  65. Oliveira PHG, Gama-Rodrigues AC, Gama-Rodrigues EF, Sales MVS (2018) Litter and soil-related variation in functional group abundances in cacao agroforests using structural equation modeling. Ecol Indic 84:254–262CrossRefGoogle Scholar
  66. Pagano MC, Scotti MR (2008) Arbuscular and ectomycorrhizal colonization of two Eucalyptus species in semiarid Brazil. Mycoscience 49:379–384CrossRefGoogle Scholar
  67. Parrotta JA, Baker DD, Fried M (1996) Changes in dinitrogen fixation in maturing stands of Casuarina equisetifolia and Leucaena leucocephala. Can J For Res 26:1684–1691CrossRefGoogle Scholar
  68. Paul K, Polglase P, Bauhus J, Raison J, Khanna P (2004) Modeling change in litter and soil carbon following afforestation or reforestation: calibration of the FULLCAM ‘BETA’ model. National Carbon Accounting System Technical Report No. 40, Canberra, Australian Greenhouse OfficeGoogle Scholar
  69. Paula RR, Bouillet JP, Trivelin PCO, Zeller B, Gonçalves JLM, Nouvellon Y, Bouvet JM, Plassard C, Laclau JP (2015) Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest. Soil Biol Biochem 91:99–108CrossRefGoogle Scholar
  70. Paula RR, Bouillet JP, Gonçalves JLM, Trivelin PCO, Balieiro FC, Nouvellon Y, Oliveira JC, Júnior JCD, Bordron B, Laclau JP (2018) Nitrogen fixation rate of Acacia mangium Wild at mid rotation in Brazil is higher in mixed plantations with Eucalyptus grandis Hill ex Maiden than in monocultures. Ann For Sci 75:14CrossRefGoogle Scholar
  71. Pereira APA, Andrade PAM, Bini D, Durrer A, Robin A, Bouillet JP, Andreote FD, Cardoso EJBN (2017) Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium. PLoS One 12:e0180371CrossRefPubMedPubMedCentralGoogle Scholar
  72. Pereira APA, Zagatto MRG, Brandani CB, Mescolotti DL, Cotta SR, Gonçalves JLM, Cardoso EJBN (2018a) Acacia changes microbial indicators and increases C and N in soil organic fractions in intercropped Eucalyptus plantations. Front Microbiol 9:1–13.
  73. Pereira APA, Santana MC, Bonfim JA, de Lourdes Mescolotti D, Cardoso EJBN (2018b) Digging deeper to study the distribution of mycorrhizal arbuscular fungi along the soil profile in pure and mixed Eucalyptus grandis and Acacia mangium plantations. Appl Soil Ecol 128:1–11CrossRefGoogle Scholar
  74. Pereira APA, Durrer A, Gumiere T, Gonçalves JLM, Robin A, Bouillet JP, Wang J, Verma JP, Singh BK, Cardoso EJBN (2019) Mixed Eucalyptus plantations induce changes in microbial communities and increase biological functions in the soil and litter layers. For Ecol Manag 433:332–342CrossRefGoogle Scholar
  75. Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149CrossRefGoogle Scholar
  76. Prescott CE, Grayston SJ (2013) Tree species influence on microbial communities in litter and soil: current knowledge and research needs. For Ecol Manag 309:19–27CrossRefGoogle Scholar
  77. Rachid CTCC, Balieiro FC, Peixoto RS, Pinheiro YAS, Piccolo MC, Chaer GM, Rosado AS (2013) Mixed plantations can promote microbial integration and soil nitrate increases with changes in the N cycling genes. Soil Biol Biochem 66:146–153CrossRefGoogle Scholar
  78. Rachid CTCC, Balieiro FC, Fonseca ES, Peixoto RS, Chaer GM, Tiedje JM, Rosado AS (2015) Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations. PLoS One 10:1–13CrossRefGoogle Scholar
  79. Rahman MM, Tsukamoto J, Tokumoto Y, Shuvo MAR (2013) The role of quantitative traits of leaf litter on decomposition and nutrient cycling of the forest ecosystems. J For Environ Sci 29(1):38–48Google Scholar
  80. Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30(9):1192–1208CrossRefPubMedPubMedCentralGoogle Scholar
  81. Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351CrossRefPubMedPubMedCentralGoogle Scholar
  82. Santos FM, Chaer GM, Diniz AR, Balieiro FC (2017) Nutrient cycling over five years of mixed-species plantations of Eucalyptus and Acacia on a sandy tropical soil. For Ecol Manag 384:110–121CrossRefGoogle Scholar
  83. Santos FM, Balieiro FC, Fontes MA, Chaer GM (2018) Understanding the enhanced litter decomposition of mixed-species plantations of Eucalyptus and Acacia mangium. Plant Soil 423:141–155CrossRefGoogle Scholar
  84. Simard WS, Jones MD, Durall DM (2003) Carbon and nutrient fluxes within and between mycorrhizal plants. In: Van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 34–74Google Scholar
  85. Singh BK (2018) Soil carbon storage: modulators, mechanisms and modeling, 1st edn. Academic Press, London, p 340Google Scholar
  86. Smith JL, Paul EA, Bollag JM, Stotzky G (1990) The significance of soil microbial biomass estimations. Soil Biochemistry 6:357–396Google Scholar
  87. Šnajdr J, Dobiášová P, Urbanová M, Petránková M, Cajthaml T, Frouz J, Baldrian P (2013) Dominant trees affect microbial community composition and activity in post-mining afforested soils. Soil Biol Biochem 56:105–115CrossRefGoogle Scholar
  88. Snowdon P, Ryan P, Raison J (2005) National carbon accounting system technical report no. 45 Review of C:N ratios in vegetation, litter and soil under Australian native forests and plantations, p 72Google Scholar
  89. Steidinger BS, Crowther TW, Liang J, Van Nuland ME, Werner GD, Reich PB, Nabuurs G, de-Miguel S, Zhou M, Picard N, Herault B, Zhao X, Zhang C, Routh D, Peay KG, GFBI consortium (2019) Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569:404–408CrossRefPubMedPubMedCentralGoogle Scholar
  90. Štursová M, Bárta J, Šantrůčková H, Baldrian P (2016) Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiol Ecol 92(12):fiw185CrossRefPubMedPubMedCentralGoogle Scholar
  91. Switzer GL, Nelson LE (1972) Nutrient accumulation and cycling in Loblolly Pine (Pinus taeda) plantation ecosystems: the first 20 years. SSSA 36:143–147CrossRefGoogle Scholar
  92. Taylor BN, Chazdon RL, Bachelot B, Menge DNL (2017) Nitrogen-fixing trees inhibit growth of regenerating Costa Rican rainforests. Proc Natl Acad Sci U S A 114(33):8817–8822CrossRefPubMedPubMedCentralGoogle Scholar
  93. Tchichelle SV, Epron D, Mialoundama F, Koutika LS, Harmand JM, Bouillet JP, Mareschal L (2017a) Differences in nitrogen cycling and soil mineralization between a eucalypt plantation and a mixed Eucalypt and Acacia mangium plantation on a sandy tropical soil. South For J For Sci 79(1):1–8CrossRefGoogle Scholar
  94. Tchichelle SV, Mareschal L, Koutika LS, Epron D (2017b) Biomass production, nitrogen accumulation and symbiotic nitrogen fixation in a mixed-species plantation of eucalypt and acacia on a nutrient-poor tropical soil. For Ecol Manag 403:103–111CrossRefGoogle Scholar
  95. Tedersoo L, Bahram M, Cajthaml T, Põlme S, Hiiesalu I, Anslan S, Harend H, Buegger F, Pritsch K, Koricheva J, Abarenkov K (2016) Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J 10:346–362CrossRefPubMedPubMedCentralGoogle Scholar
  96. Trumbore S, Brando P, Hartmann H, Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG (2015) Boreal forest health and global change. Science 349:819–822CrossRefGoogle Scholar
  97. Urbanová M, Šnajdr J, Baldrian P (2015) Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol Biochem 84:53–64CrossRefGoogle Scholar
  98. Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310CrossRefPubMedPubMedCentralGoogle Scholar
  99. Voigtlaender M, Laclau JP, de Gonçalves JLM, Piccolo MC, Moreira MZ, Nouvellon Y, Ranger J, Bouillet JP (2012) Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant Soil 352(1-2):99–111CrossRefGoogle Scholar
  100. Wang GZ, Li HG, Christie P, Zhang FS, Zhang JL, Bever JD (2017) Plant-soil feedback contributes to intercropping overyielding by reducing the negative effect of take-all on wheat and compensating the growth of faba bean. Plant Soil 415:1–12CrossRefGoogle Scholar
  101. Ward BB, Jensen MM (2014) The microbial nitrogen cycle. Front Microbiol 5:2–3CrossRefGoogle Scholar
  102. Wardle DA, Bardgett RD, Klironomonas JN, Setala H, Van Der Putten WH, Wall DH (2004) Belowground biota ecological linkages between aboveground and belowground biota. Science 304:1629–1633CrossRefPubMedPubMedCentralGoogle Scholar
  103. Wedderburn ME, Carter J (1999) Litter decomposition by four functional tree types for use in silvopastoral systems. Soil Biol Biochem 31:455–461CrossRefGoogle Scholar
  104. Zagatto MRG, Pereira AP, Souza AJ, Pereira RF, Baldesin LF, Pereira CM, Lopes RV, Cardoso EJBN (2019) Interactions between mesofauna, microbiological and chemical soil attributes in pure and intercropped Eucalyptus grandis and Acacia mangium plantations. For Ecol Manag 433:240–247CrossRefGoogle Scholar
  105. Zaia FC, Gama-Rodrigues AC, Gama-Rodrigues EF, Moço MKS, Machado RCR, Baligar VC (2012) Carbon, nitrogen, organic phosphorus, microbial biomass and N mineralization in soils under cacao agroforestry systems in Bahia, Brazil. Agrofor Syst 86:197–212CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Soil ScienceUniversity of São Paulo, “Luiz de Queiroz” College of AgriculturePiracicabaBrazil
  2. 2.Soil Science Department (Pici Campus)Federal University of CearáFortalezaBrazil
  3. 3.State University of the Central WestGuarapuavaBrazil
  4. 4.North Fluminense State UniversityCampos dos GoytacazesBrazil

Personalised recommendations