Mesofauna and Macrofauna in Soil and Litter of Mixed Plantations

  • Maurício Rumenos Guidetti Zagatto
  • Luís Carlos Iuñes Oliveira Filho
  • Pâmela Niederauer Pompeo
  • Cintia Carla Niva
  • Dilmar Baretta
  • Elke Jurandy Bran Nogueira Cardoso


The cultivation of leguminous nitrogen-fixing tree species improves soil chemical properties, especially with regard to N, and has been identified to be ecologically and economically interesting in intercropped systems with Eucalyptus spp., although the effect of these mixed plantations on soil and litter invertebrates still is poorly understood. This chapter tries to elucidate how forest plantations affect the soil mesofauna and macrofauna. Our results showed that management systems and weather conditions are the main factors that affect the soil faunal community structure. In soil and in litter, the mesofauna community is strongly related to Acacia mangium, and these invertebrates are strongly modulated by the water content in soil. Under lower soil moisture, we verified higher mesofauna abundance in the soil and higher correlation between invertebrates and microorganisms; however, with even a little increase in soil moisture, most of the invertebrates preferred litter and, in this case, there was little correlation. Leguminous trees were associated with a higher abundance of soil macrofauna than Eucalypt plantations, especially with millipedes. In mixed plantations of Eucalypt and Acacia, there was a higher macrofauna abundance and diversity, since they are more comparable to native forests than to agricultural systems, because of less anthropogenic intervention.


Mesofauna diversity Mesofauna density Macrofauna Community structure Ecology 


  1. Aliaga R, Fuentes AH, Clericus JEA (2017) Effect of post-harvest forestry residue management practices on the diversity of epigeal coleopterans. Rev Fac Nac Agron 70:8069–8075CrossRefGoogle Scholar
  2. Anderson JM (2009) Why should we care about soil fauna? Pesqui Agropecu Bras 44:835–842CrossRefGoogle Scholar
  3. Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility: a handbook on methods, 2nd edn. CAB International, WallingfordGoogle Scholar
  4. Assis O (2015) Enquitreídeos (Enchytraeidae, Oligochaeta) como indicadores do manejo do solo e em ensaios ecotoxicológicos. Master’s Dissertation, Universidade Tecnológica do ParanáGoogle Scholar
  5. Bachega LR, Bouillet JP, Picollo MC, Saint-André L, Bouvet JM, Nouvellon Y, Gonçalves JLM, Robin A, Laclau JP (2016) Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the Home Field Advantage hypothesis. For Ecol Manag 359:33–43CrossRefGoogle Scholar
  6. Barbercheck ME, Neher DA, Anas O, El-Allaf SM, Weicht TR (2009) Response of soil invertebrates to disturbance across three resource regions in North Carolina. Environ Monit Assess 152:283–298CrossRefGoogle Scholar
  7. Bardgett RD, Van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511CrossRefGoogle Scholar
  8. Baretta D, Santos JCP, Segat JC, Geremia EV, Oliveira Filho LCI, Alves MV (2011) Fauna edáfica e qualidade do solo. In: Tópicos em Ciência do Solo. SBCS, Viçosa, pp 119–170Google Scholar
  9. Bartz MLC, Brown GG, Rosa MG, Klauberg Filho O, James SW, Decaëns T, Baretta D (2014) Earthworm richness in land-use systems in Santa Catarina, Brazil. Appl Soil Ecol 83:59–70CrossRefGoogle Scholar
  10. Bini D, Santos CA, Bouillet JP, Gonçalves JLM, Cardoso EJBN (2013) Eucalyptus grandis and Acacia mangium in monoculture and intercropped plantations: evolution of soil and litter microbial and chemical attributes during early stages of plant development. Appl Soil Ecol 63:57–66CrossRefGoogle Scholar
  11. Blasi S, Menta C, Balducci L, Conti FD, Petrini E, Piovesan G (2013) Soil micro-arthropod communities from Mediterranean forest ecosystems in Central Italy under different disturbances. Environ Monit Assess 185:1637–1655CrossRefGoogle Scholar
  12. Brown GG, Niva CC, Zagatto MRG, Ferreira S, Nadolny H, Cardoso GX, Santos A, Martinez G, Pasini A, Bartz MLC, Sautter KD, Thomazini MJ, Baretta D, Silva E, Antoniolli ZI, Decaëns T, Lavelle P, Sousa JP, Carvalho F (2015) Biodiversidade da Fauna do solo e sua contribuição para os serviços ambientais. In: Parron LM, Garcia JR, Oliveira EB, Brown GG, Prado RB (eds) Serviços Ambientais em Sistemas Agrícolas e Florestais do Bioma Mata Atlântica. EMBRAPA, Brasília, pp 113–154Google Scholar
  13. Cardoso EJBN, Vasconcellos RLF, Bini D, Miyauchi MYH, Santos CA, Alves PRL, Paula AM, Nakatani AS, Pereira JM, Nogueira MA (2013) Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci Agric 70:274–289CrossRefGoogle Scholar
  14. Carrera N, Briones MJI (2013) Arthropod community structure and diversity from galician upland peatlands. In: Riosmena-Rodriguez R (ed) Invertebrates: classification evolution and biodiversity. Nova Science, New York, p 251Google Scholar
  15. Choi WI, Moorhead DL, Neher DA, MIl R (2006) A modeling study of soil temperature and moisture effects on population dynamics of Paronychiuruskimi (Collembola: Onychiuridae). Biol Fertil Soils 43:69–75CrossRefGoogle Scholar
  16. Creamer RE, Hannula SE, JPV L, Stone D, Rutgers M, Schmelz RM, Ruitter PC, Hendriksen NB, Bolger T, Bouffaud ML, Buee M, Carvalho F, Costa D, Dirilgen T, Francisco R, Griffiths BS, Griffiths R, Martin F, Martins da Silva P, Mendes S, Morais PV, Pereira C, Philippot L, Plassart P, Redecker D, Römbke J, Sousa JP, Wouterse M, Lemanceau P (2016) Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Appl Soil Ecol 97:112–124CrossRefGoogle Scholar
  17. Derpsch R, Friedrich T, Kassam A, Hongwen L (2010) Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng 3:1–25Google Scholar
  18. Didden WAM (1993) Ecology of terrestrial Enchytraeidae. Pedobiologia 37:2–29Google Scholar
  19. Filho LCIO, Baretta D (2016) Por que devemos nos importar com os colêmbolos edáficos? Sci Agrár 17:21–40Google Scholar
  20. Filser J, Faber JH, Tiunov AV, Brussaard L, Frouz J, Deyn G, Uvarov AV, Berg MP, Lavelle P, Loreau M, Wall DH, Querner P, Eijsackers H, Jiménez JJ (2016) Soil fauna: key to new carbon models. Soil 2:565–582CrossRefGoogle Scholar
  21. Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: A review. For Ecol Manag 233:211–230CrossRefGoogle Scholar
  22. Fountain-Jones NM, Baker SC, Jordan GJ (2015) Moving beyond the guild concept: developing a practical functional trait framework for terrestrial beetles. Ecol Entomol 40:1–13CrossRefGoogle Scholar
  23. Gardi C, Menta C, Leoni A (2008) Evaluation of the environmental impact of agricultural management practices using soil microarthropods. Fresenius Environ Bull 17:1165–1169Google Scholar
  24. Gonçalves JLM, Stape JL, Laclau JP, Bouillet JP, Ranger J (2008) Assessing the effects of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations: the Brazilian experience. South Forest 70:105–118CrossRefGoogle Scholar
  25. Graefe U, Beylich A (2003) Critical values of soil acidification for annelid species and decomposer community. Newsletter Enchytraeidae 8:51–55Google Scholar
  26. Huhta V, Hyvönen R, Koskenniemi A, Vilkamaa P, Kaasalainen P, Sulander M (1986) Response of soil fauna to fertilization and manipulation of pH in coniferous forests. Acta Forest Fenn 195:1–30Google Scholar
  27. Huhta V (1984) Response of Cognettia sphagnetorum (Enchytraeidae) to manipulation of pH and nutrient status to coniferous forest soil. Pedobiologia 27:245–260Google Scholar
  28. IBÁ (2015) Anuário estatístico—Ano base 2014Google Scholar
  29. Kamau S, Barrios E, Karanja NK, Ayuke FO, Lehmann J (2017) Soil macrofauna abundance under dominant tree species increases along a soil degradation gradient. Soil Biol Biochem 112:35–46CrossRefGoogle Scholar
  30. Kaneda S, Kaneko N (2011) Influence of collembola on nitrogen mineralization varies with soil moisture content. Soil Sci Plant Nutr 57:40–49CrossRefGoogle Scholar
  31. Kautz G, Zimmer M, Topp W (2002) Does Porcellioscaber (Isopoda: Oniscidea) gain from coprophagy? Soil Biol Biochem 34:1253–1259CrossRefGoogle Scholar
  32. Korasaki V, Lopes J, Brown GG, Louzada J (2012) Using dung beetles to evaluate the effects of urbanization on Atlantic Forest biodiversity. Insect Sci 00:1–14Google Scholar
  33. Laclau JP, Bouillet JP, Gonçalves JLM, Silva EV, Jourdan C, Cunha MCS, Moreira MR, Saint-André L, Maquère V, Nouvellon Y, Ranger J (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil: 1. Growth dynamics and aboveground net primary production. For Ecol Manag 255:3905–3917CrossRefGoogle Scholar
  34. Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27:93–132CrossRefGoogle Scholar
  35. Lavelle P, Bignell D, Lepage M, Wolters W, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193Google Scholar
  36. Machado JS, Oliveira Filho LCI, Santos JCP, Paulino AT, Baretta D (2019) Morphological diversity of springtails (Hexapoda: Collembola) as soil quality bioindicators in land use systems. Biota Neotrop 19:e20180618CrossRefGoogle Scholar
  37. McCann KS (2000) The diversity–stability debate. Nature 405:228–233CrossRefGoogle Scholar
  38. Meloni F, Varanda EM (2015) Litter and soil arthropod colonization in reforested semi-deciduous seasonal Atlantic forests. Restor Ecol 23:690–697CrossRefGoogle Scholar
  39. Menta C, Conti FD, Pinto S (2018a) Microarthropods biodiversity in natural, seminatural and cultivated soils—QBS-ar approach. Appl Soil Ecol 123:740–743CrossRefGoogle Scholar
  40. Menta C, Conti FD, Pinto S, Bodini A (2018b) Soil Biological Quality index (QBS-ar): 15 years of application at global scale. Ecol Indic 85:773–780CrossRefGoogle Scholar
  41. Mound LA (2005) Thysanoptera: diversity and interactions. Annu Rev Entomol 50:247–269CrossRefGoogle Scholar
  42. Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila ME (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Conserv 141:1461–1474CrossRefGoogle Scholar
  43. Niva CC, Cezar RM, Fonseca PM, Zagatto MRG, Oliveira EM, Bush EF, Clasen LA, Brown GG (2015) Enchytraeid abundance in Araucaria mixed forest determined by cold and hot wet extraction. Brazilian J Biol 75:169–175CrossRefGoogle Scholar
  44. Nurminen M (1967) Ecology of enchytraeids (Oligochaeta) in Finnish coniferous forest soil. Ann Zool Fenn 4:147–157Google Scholar
  45. Oliveira Filho LCI, Baretta D, Pereira JM, Maluche-Baretta CRD, Pompeo PN, Cardoso EJBN (2018) Fauna edáfica em ecossistemas florestais. In: Ciências Ambientais, pp 10–48Google Scholar
  46. Oliveira Filho LCI, Klauberg Filho O, Baretta D, Tanaka CAS, Sousa JP (2016) Collembola community structure as a tool to assess land use effects on soil quality. Rev Bras Cienc Solo 40:1–18Google Scholar
  47. Paoletti MG, Hassall M (1999) Woodlice (Isopoda: Oniscidea): their potential for assessing sustainability and use as bioindicators. Agric Ecosyst Environ 74:157–165CrossRefGoogle Scholar
  48. Parisi A (2001) The biological soil quality, a method based on microarthropods (in Italy). Acta Nat L’Ateneo Parm 37:97–106Google Scholar
  49. Parisi V, Menta C, Gardi C, Jacomini C, Mozzanica E (2005) Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy. Agric Ecosyst Environ 105:323–333CrossRefGoogle Scholar
  50. Pelosi C, Römbke J (2016) Are Enchytraeidae (Oligochaeta: Anellida) good indicators of agricultural management practices? Soil Biol Biochem 100:255–253CrossRefGoogle Scholar
  51. Peña-Peña K, Irmler U (2016) Moisture, seasonality, soil fauna, litter quality and land use as a driver of decomposition in Cerrado soils in SE–Mato Grosso, Brazil. Appl Soil Ecol 107:124–133CrossRefGoogle Scholar
  52. Pereira APA, Andrade PAM, Bini D, Durrer A, Robin A, Bouillet JP, Andreote FD, Cardoso EJBN (2017a) Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium. PLoS One 12:1–15Google Scholar
  53. Pereira APA, Zagatto MRG, Brandani CB, Mescolotti DL, Cotta SR, Gonçalves JLM, Cardoso EJBN (2018) Acacia changes microbial indicators and increases C and N in soil organic fractions in intercropped Eucalyptus plantations. Front Microbiol 9:1–13CrossRefGoogle Scholar
  54. Pereira JDM, Segat JC, Baretta D, Leandro R (2017b) Soil Macrofauna as a soil quality indicator in native and replanted Araucaria angustifolia forests. Rev Bras Ciênc Solo 41:1–15CrossRefGoogle Scholar
  55. Pereira JM, Baretta D, Cardoso EJBN (2015) Fauna edáfica em floresta de Araucária. In: Cardoso EJBN, Vasconcellos RLF (eds) Floresta Com Araucária: Composição Florística e Biota Do Solo. Editora FEALQ, Piracicaba, pp 153–180Google Scholar
  56. Pey B, Nahmani J, Auclerc A, Capowiez Y, Cluzeau D, Cortet J, Decaëns T, Deharveng L, Dubs F, Joimel S, Briard C, Grumiaux F, Laporte MA, Pasquet A, Pelosi C, Pernin C, Ponge JF, Salmon S, Santorufo L, Hedde M (2014) Current use of and future needs for soil invertebrate functional traits in community ecology. Basic Appl Ecol 15:194–206CrossRefGoogle Scholar
  57. Pompeo PN, Oliveira Filho LCI, Filho OK, Mafra AL, Baretta CRDM, Baretta D (2016) Coleoptera diversity (Arthropoda: Insecta) and soil properties under soil management systems in the highlands of Santa Catarina state, Brazil. Sci Agrár 17:16–28Google Scholar
  58. Pompeo PN, Oliveira Filho LCI, Santos MAB, Mafra AL, Klauberg Filho O, Baretta D (2017) Morphological diversity of Coleoptera (Arthropoda: Insecta) in agriculture and forest systems. Rev Bras Cienc Solo 41:e0160433CrossRefGoogle Scholar
  59. Römbke J (2007) Enchytraeidae of tropical soils: state of the art, with special emphasis on Latin America. Folia Facultatis Scientiarium Naturalium Universitatis Masarykianae Brunensis. Biologia 110:157–181Google Scholar
  60. Römbke J, Collado R, Schmelz RM (2007) Abundance, distribution and indicator potential of enchytraeid genera (Enchytraeidae, Clitellata) in secondary forests and pastures of the Mata Atlântica. Acta Hydrobiol Sin 31:139–150Google Scholar
  61. Rosa MG, Klauberg Filho O, Bartz MLC, Mafra AL, Sousa JPFA, Baretta D (2015) Macrofauna edáfica e atributos físicos e químicos em sistemas de uso do solo no planalto catarinense. Rev Bras Cienc Solo 39:1544–1553CrossRefGoogle Scholar
  62. Santos MAB, Oliveira Filho LCI, Pompeo PN, Ortiz DC, Mafra AL, Klauberg Filho O, Baretta D (2018) Morphological diversity of springtails in land use systems. Rev Bras Cienc Solo 41:e0170277Google Scholar
  63. Schlaghamerský J (2013) Enchytraeid assemblages (Annelida: Clitellata: Enchytraeidae) of two old growth forests in the Porcupine Mountains (Michigan, USA). Soil Organisms 85:85–96Google Scholar
  64. Schmelz RM, Collado R (2010) A guide to European terrestrial and freshwater species of Enchytraeidae (Oligochaeta). Soil Organisms 82:1–176Google Scholar
  65. Schmelz RM, Niva CC, Römbke J, Collado R (2013) Diversity of terrestrial Enchytraeidae (Oligochaeta) in Latin America: current knowledge and future research potential. Appl Soil Ecol 69:13–20CrossRefGoogle Scholar
  66. Silva RF, Aquino AM, Mercante FM, Guimarães MF (2006) Soil invertebrate macrofauna under different production systems in a Hapludox in the Cerrado Regional. Pesqui Agropecu Bras 41(4):697–704CrossRefGoogle Scholar
  67. Souza ST, Cassol PC, Baretta D, Bartz MLC, Klauberg Filho O, Mafra AL, Rosa MG (2016) Abundance and diversity of soil macrofauna in native forest, eucalyptus plantations, perennial pasture, integrated crop-livestock, and no-tillage cropping. Rev Bras Cienc Solo 40:e0150248Google Scholar
  68. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific, OxfordGoogle Scholar
  69. Teuben A, Verhoef HA (1992) Direct contribution by soil arthropods to nutrient availability through body and faecal nutrient content. Biol Fertil Soils 14:71–75CrossRefGoogle Scholar
  70. Vaçulik A, Kounda-Kiki C, Sarthou C, Ponge JF (2004) Soil invertebrate activity in biological crusts on tropical inselbergs. Eur J Soil Sci 55:539–549CrossRefGoogle Scholar
  71. Van Capelle C, Schrader S, Brunotte J (2012) Tillage-induced changes in the functional diversity of soil biota—a review with a focus on German data. Eur J Soil Biol 50:165–181CrossRefGoogle Scholar
  72. Van Der Putten WH, De Ruiter PC, Bezemer TM, Harvey JA, Wassen M, Wolters V (2004) Trophic interactions in a changing world. Basic Appl Ecol 5:487–494CrossRefGoogle Scholar
  73. Van Vliet PCJ, Beare MH, Coleman DC, Hendrix PF (2004) Effects of enchytraeids (Annelida: Oligochaeta) on soil carbon and nitrogen dynamics in laboratory incubations. Appl Soil Ecol 25:147–160CrossRefGoogle Scholar
  74. Wagg C, Bender F, Widmer F, van der Heyden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111:5266–5270CrossRefPubMedPubMedCentralGoogle Scholar
  75. Warren MW, Zou X (2002) Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. For Ecol Manag 170:161–171CrossRefGoogle Scholar
  76. Zagatto MRG, Niva CC, Thomazini MJ, Baretta D, Santos A, Nadolny H, Cardoso GBX, Brown GG (2017) Soil invertebrates in different land use systems: how integrated production systems and seasonality affect soil Mesofauna communities. J Agric Sci Technol B 7:150–161Google Scholar
  77. Zagatto MRG, Pereira APA, Souza AJ, Fabri RF, Baldesin LF, Pereira CM, Lopes RV, Cardoso EJBN (2019a) Interactions between mesofauna, microbiological and chemical soil attributes in pure and intercropped Eucalyptus grandis and Acacia mangium plantations. For Ecol Manag 433:240–247CrossRefGoogle Scholar
  78. Zagatto MRG, Zanão Júnior LA, Pereira APA, Estrada-Bonilla G, Cardoso EJBN (2019b) Soil mesofauna in consolidated land use systems: how management affects soil and litter invertebrates. Sci Agric 76(2):165–171CrossRefGoogle Scholar
  79. Zhiqun T, Jian Z, Junli Y, Chunzi W, Danju Z (2017) Chemosphere Allelopathic effects of volatile organic compounds from Eucalyptus grandis rhizosphere soil on Eisenia fetida assessed using avoidance bioassays, enzyme activity, and comet assays. Chemosphere 173:307–317CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Maurício Rumenos Guidetti Zagatto
    • 1
  • Luís Carlos Iuñes Oliveira Filho
    • 2
  • Pâmela Niederauer Pompeo
    • 2
  • Cintia Carla Niva
    • 3
  • Dilmar Baretta
    • 2
  • Elke Jurandy Bran Nogueira Cardoso
    • 1
  1. 1.Department of Soil ScienceUniversity of São Paulo, “Luiz de Queiroz” College of AgriculturePiracicabaBrazil
  2. 2.Santa Catarina State UniversityChapecóBrazil
  3. 3.Embrapa Cerrados, Brazilian Agricultural Research CorporationPlanaltinaBrazil

Personalised recommendations