Mycorrhiza in Mixed Plantations

  • Maiele Cintra SantanaEmail author
  • Arthur Prudêncio de Araujo Pereira
  • Bruna Andréia de Bacco Lopes
  • Agnès Robin
  • Antonio Marcos Miranda Silva
  • Elke Jurandy Bran Nogueira Cardoso


Mycorrhiza is a mutualistic symbiosis found in about 90% of the terrestrial plants. The arbuscular mycorrhiza (AM) and ectomycorrhiza (ECM), present in Eucalypt and Acacia, are the most studied in forests due to their importance in ecosystem productivity and sustainability in forestry. Here, our focus is to show recent results regarding their incidence, diversity, and functioning in planted forests, mainly those of Eucalyptus and Acacia spp. in consortia. Until recently, everybody assumed that arbuscular mycorrhizal fungi (AMF) were restricted to the uppermost 30 cm of soil. Yet, we evaluated their presence at the soil surface and in much deeper layers, since Eucalypt presents a root system that reaches down to about 20 m, still active in acquiring nutrients and water from deep reserves, which is of utmost importance during drought periods. In tropical soils of low pH and low fertility, with highly variable moisture levels, mycorrhiza provides better growth and higher tolerance to water deficiency and high temperatures, protection against pathogens, and greater efficiency in nutrient uptake. In short, mycorrhiza is a key factor of sustainability for Eucalypt stands in monoculture and in mixed plantations, mainly in tropical highly weathered soils.


Arbuscular mycorrhiza Ectomycorrhiza Symbiosis Eucalyptus Acacia Deep soil 


  1. Agerer R (1995) Anatomical characteristics of identified ectomycorrhizas: an attempt towards a natural classification. In: Varma A, Hock B (eds) Mycorrhiza. Springer Verlag, Berlin, pp 685–734CrossRefGoogle Scholar
  2. Agerer R (2001) Exploration types of ectomycorrhizae—a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114CrossRefGoogle Scholar
  3. Aguilar-Trigueros CA, Powell JR, Anderson IC et al (2014) Ecological understanding of root-infecting fungi using trait-based approaches. Trends Plant Sci 19:432–438CrossRefGoogle Scholar
  4. Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779CrossRefGoogle Scholar
  5. Barros FM, Bradi RM, Reis MS (1978) Micorriza em eucalipto. Rev Árv 2:130–140Google Scholar
  6. Bellei MD, Garbaye J, Gil M (1992) Mycorrhizal succession in young Eucalyptus-Viminalis plantations in Santa-Catarina (southern Brazil). Forest Ecol Manag 54:205–213CrossRefGoogle Scholar
  7. Berbara RLL, Souza FA, Fonseca HMAC (2006) III—Fungos Micorrízicos Arbusculares: Muito Além da Nutrição. In: Nutrição Mineral de Plantas. Accessed 18 Jun 2019
  8. Bethlenfalvay GJ, Brown MS, Stafford AE (1985) Glycine-Glomus-rhizobium symbiosis: II. Antagonistic effects between mycorrhizal colonization and nodulation. Plant Physiol 79:1054–1058CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bini D (2012) Atributos microbianos e químicos do solo e da serapilheira em plantios puros e mistos de Eucalyptus e Acacia mangium. Thesis, Universidade de São PauloGoogle Scholar
  10. Bini D et al (2018) Intercropping Acacia mangium stimulates AMF colonization and soil phosphatase activity in Eucalyptus grandis. Sci Agric 75:102–110. Scholar
  11. Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495CrossRefGoogle Scholar
  12. Brundrett MC (1991) Mycorrhizas in natural ecosystems. In: Macfayden A, Begon M, Fitter AH (eds) Advances in ecological research. Academic, London, pp 171–313CrossRefGoogle Scholar
  13. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol. 154:275–304CrossRefGoogle Scholar
  14. Campos DTDS, Silva MDCSD, Luz JMRD et al (2011) Colonização micorrízica em plantios de eucalipto. Rev Árvore 35:965–974CrossRefGoogle Scholar
  15. Caproni AL et al (2005) Fungos micorrízicos arbusculares em estéril revegetado com Acacia mangium, após mineração de bauxita. Rev Árv 29:373–381CrossRefGoogle Scholar
  16. Cardoso EJBN (1985) Effect of Mycorrhiza and rock phosphate on growth and production of the Symbiosis soybean-rhizobium. Rev Bras Ci Solo 9:125–130Google Scholar
  17. Cardoso EJBN et al (2010) Micorrizas arbusculares na aquisição de nutrientes pelas plantas. In: Siqueira JO et al (eds) Micorrizas: 30 anos de pesquisas no Brasil. Editora UFLA, Lavras, pp 153–215Google Scholar
  18. Cardoso EJBN, Andreote FD (2016) Microbiologia do Solo (recurso eletrônico), 2.ed. ESALQ, Piracicaba-SP, 221 pGoogle Scholar
  19. Cardoso EJBN, Nogueira MA, Zangaro W (2017) Importance of Mycorrhizae in tropical soils. Diversity and benefits of microorganisms from the tropics 245–267.
  20. Carvalho TS, Moreira FMS (2010) Simbioses leguminosas, fungos micorrízicos e bactérias fixadoras de nitrogênio nodulíferas. In: Siqueira JO et al (eds) Micorrizas: 30 anos de pesquisa no Brasil. Editora UFLA, Lavras, pp 383–414Google Scholar
  21. Cavagnaro TR, Sokolow SK, Jackson LE (2007) Mycorrhizal effects on growth and nutrition of tomato under elevated atmospheric carbon dioxide. Funct Plant Biol 34:730–736CrossRefGoogle Scholar
  22. Chen YL et al (2014) Use of mycorrhizal fungi for forest plantations and mine site rehabilitation. In: Solaiman ZM et al (eds) Mycorrhizal fungi: use in sustainable agriculture and land restoration. Springer, Berlin, Heidelberg, pp 325–355CrossRefGoogle Scholar
  23. Chen YL, Liu S, Dell B (2007) Mycorrhizal status of Eucalyptus plantations in South China and implications for management. Mycorrhiza 17:527–535CrossRefGoogle Scholar
  24. Chilvers GA, Pryor LD (1965) The structure of Eucalyptus mycorrhizas. Aust J Bot 13:245–259CrossRefGoogle Scholar
  25. Chiquete AAS (2011) Diversidade de Fungos em Solos de Florestas Plantadas de Eucalipto. Universidade Federal de Viçosa, TeseGoogle Scholar
  26. Churchland C, Grayston SJ (2014) Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front Microbiol 5:261. Scholar
  27. Clasen BE, Silveira ADO, Baldoni DB et al (2018) Characterization of Ectomycorrhizal species through molecular biology tools and morphotyping. Sci Agr 75(3):246–254CrossRefGoogle Scholar
  28. Craig GF, Atkins CA, Bell DT (1991) Effect of salinity on growth of four strains of rhizobium and their infectivity and effectiveness on two species of Acacia. Plant Soil 133(2):253–262CrossRefGoogle Scholar
  29. Dalpé Y, Diop TA, Plenchette C, Gueye M (2000) Glomales species associated with surface and deep rhizosphere of Faidherbia albida in Senegal. Mycorrhiza 10(3):125–129CrossRefGoogle Scholar
  30. Dickson S (2004) The Arum–Paris continuum of mycorrhizal symbioses. New Phytol 163(1):187–200CrossRefGoogle Scholar
  31. Dommergues YR (1987) The role of biological nitrogen fixation in agroforestry. Agroforestry, p 245Google Scholar
  32. Egerton-Warburton LM, Querejeta JI, Allen MF (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot 58(6):1473–1483CrossRefGoogle Scholar
  33. Frank AB, Trappe JM (2005) On the nutritional dependence of certain trees on root symbiosis with belowground fungi (an English translation of A.B. Frank’s classic paper of 1885). Mycorrhiza 15:267–275CrossRefGoogle Scholar
  34. Futai K, Taniguchi T, Kataoka R (2008) Ectomycorrhizae and their importance in forest ecosystems. In: Siddiqui ZA et al (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 241–285CrossRefGoogle Scholar
  35. Gallaud J (1905) Étude sur les mycorrhizes endotrophes. Rev Gn Bot 17:5–500Google Scholar
  36. Garbaye J (1991) Biological interactions in the mycorrhizosphere. Experientia 47:370–375CrossRefGoogle Scholar
  37. Gasparotto FA, Navarrete AA, Souza FA et al (2010) Técnicas moleculares aplicadas ao estudo das micorrizas. In: Siqueira JO (ed) Micorrizas: 30 anos de pesquisa no Brasil. Editora UFLA, Lavras, pp 551–582Google Scholar
  38. Germon A, Guerrini IA, Bordron B et al (2018) Consequences of mixing Acacia mangium and Eucalyptus grandis trees on soil exploration by fine-roots down to a depth of 17 m. Plant Soil 424:203–220CrossRefGoogle Scholar
  39. Gocke MI, Huguet A, Derenne S et al (2017) Disentangling interactions between microbial communities and roots in deep subsoil. Sci Total Environ 575:135–145CrossRefGoogle Scholar
  40. Gomes SP, Trufem SFB (1998) Fungos micorrízicos arbusculares (Glomales, Zygomycota) na Ilha dos Eucaliptos, Represa do Guarapiranga, São Paulo, SP. Acta Bot Bras 12:393–401CrossRefGoogle Scholar
  41. Harley JLH, Smith SE (1983) Mycorrhizal symbiosis. Academic, New York, p 483Google Scholar
  42. He X, Critchley C, Ng H, Bledsoe C et al (2005) Nodulated N2-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp using (NH4+)-N-15 or (NO3−)-N-15 supplied as ammonium nitrate. New Phytol 167:897–912CrossRefGoogle Scholar
  43. He X, Xu M, Qiu G et al (2009) Use of N-15 stable isotope to quantify nitrogen transfer between mycorrhizal plants. J Plant Ecol 2:107–118CrossRefGoogle Scholar
  44. Helgason T, Daniell TJ, Husband R et al (1998) Ploughing up the wood-wide web? NatureGoogle Scholar
  45. Jalonen R, Nygren P, Sierra J (2009) Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant Cell Environ 32:1366–1376CrossRefGoogle Scholar
  46. Kasuya MCM, Costa MD, Araújo EF et al (2010) Ectomicorrizas no Brasil: biologia e nutrição de plantas. In: Siqueira JO et al (eds) Micorrizas: 30 anos de pesquisa no Brasil. Editora UFLA, Lavras, pp 615–643Google Scholar
  47. Laclau JP, Nouvellon Y, Reine C et al (2013) Mixing Eucalyptus and Acacia trees leads to fine root over-yielding and vertical segregation between species. Oecologia 172:903–913CrossRefGoogle Scholar
  48. Lambais GR, Jourdan C, Piccolo MD et al (2017) Contrasting phenology of Eucalyptus grandis fine roots in upper and very deep soil layers in Brazil. Plant Soil 421:301–318CrossRefGoogle Scholar
  49. Lambais MR (2010) Sinalização e transdução de sinais em micorrizas arbusculares. In: Siqueira JO et al (eds) Micorrizas: 30 anos de pesquisas no Brasil. Editora UFLA, Lavras, p 119Google Scholar
  50. Lambais MR et al (2005) Diversidade microbiana nos solos: definindo novos paradigmas. In: Vidal-Torrado P et al (eds) Tópicos em ciência do solo. SBCS, Viçosa, pp 43–84Google Scholar
  51. Lammel DR, Cruz LM, Mescolotti DLC et al (2015) Woody Mimosa species are nodulated by Burkholderia in ombrophylous forest soils and their symbioses are enhanced by arbuscular mycorrhizal fungi (AMF). Plant Soil 393(1–2):123–135CrossRefGoogle Scholar
  52. Levisohn J (1958) Effects of mycorrhiza on tree growth. Soils Fertil 21:73–82Google Scholar
  53. Li CH, Yan K, Tang LS et al (2014) Change in deep soil microbial communities due to long-term fertilization. Soil Biol Biochem 75:264–272CrossRefGoogle Scholar
  54. Liese R, Lubbe T, Albers NW et al (2018) The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species. Tree Physiol 38:83–95CrossRefGoogle Scholar
  55. Malajczuk N, Linderman RG, Kough J et al (1981) Presence of vesicular-arbuscular mycorrhizae in Eucalyptus spp. and Acacia sp., and their absence in Banksia sp. after inoculation with Glomus fasciculatus. New Phytol 87:567–572CrossRefGoogle Scholar
  56. McCormack ML, Fernandez CW, Brooks H et al (2017) Production dynamics of Cenococcum geophilum ectomycorrhizas in response to long-term elevated CO2 and N fertilization. Fungal Ecol 26:11–19CrossRefGoogle Scholar
  57. Mendes Filho PF, Vasconcellos RLF, Paula AM et al (2010) Evaluating the potential of forest species under “microbial management” for the restoration of degraded mining areas. Water Air Soil Pollut 208:79–89CrossRefGoogle Scholar
  58. Meng LB, Zhang AY, Wang F et al (2015) Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci 6:10Google Scholar
  59. Midgley MG, Brzostek E, Phillips RP (2015) Decay rates of leaf litters from arbuscular mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees. J Ecol 103:1454–1463CrossRefGoogle Scholar
  60. Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant–fungal process. Chapman & Hall, New York, pp 357–423Google Scholar
  61. Montesinos-Navarro A, Verdu M, Querejetac JI et al (2016) Soil fungi promote nitrogen transfer among plants involved in long-lasting facilitative interactions. Perspect Plant Ecol 18:45–51CrossRefGoogle Scholar
  62. Moreira FS, Siqueira JO (2006) Microbiologia e bioquimica do solo. Editora UFLA, LavrasGoogle Scholar
  63. Mortimer PE, Pérez-Fernández MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol Biochem 40:1019–1027CrossRefGoogle Scholar
  64. Moyer-Henry KA, Burton JW, Israel D et al (2006) Nitrogen transfer between plants: a N-15 natural abundance study with crop and weed species. Plant Soil 282:7–20CrossRefGoogle Scholar
  65. Nogueira MA, Cardoso EJBN (2006) Plant growth and phosphorus uptake in mycorrhizal Rangpur lime seedlings under different levels of phosphorus. Pesq Agrop Brasileira 41:93–99CrossRefGoogle Scholar
  66. Oliveira VL, Schmidt VDB, Bellei MM (1997) Patterns of arbuscular- and ecto-mycorrhizal colonization of Eucalyptus dunnii in southern Brazil. Ann Sci Forest 54:473–481CrossRefGoogle Scholar
  67. Paula RR, Bouillet J-P, Ocheuze Trivelin PC et al (2015) Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest. Soil Biol Biochem 91:99–108CrossRefGoogle Scholar
  68. Pereira APA (2015) Influência da profundidade do solo e do manejo de Eucalyptus grandis e Acacia mangium na estrutura das comunidades microbianas do solo. Dissertação, Universidade de São PauloGoogle Scholar
  69. Pereira APD, de Andrade PAM, Bini D et al (2017) Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium. PLoS One 12Google Scholar
  70. Pereira APD, Santana MC, Bonfim JA et al (2018) Digging deeper to study the distribution of mycorrhizal arbuscular fungi along the soil profile in pure and mixed Eucalyptus grandis and Acacia mangium plantations. Appl Soil Ecol 128:1–11CrossRefGoogle Scholar
  71. Peterson RL, Bonfante P (1994) Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas. Plant Soil 159(1):79–88CrossRefGoogle Scholar
  72. Prieto I, Roldán A, Huygens D et al (2016) Species-specific roles of ectomycorrhizal fungi in facilitating interplant transfer of hydraulically redistributed water between Pinus halepensis saplings and seedlings. Plant Soil 406(1–2):15–27CrossRefGoogle Scholar
  73. Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47(4):376–391CrossRefGoogle Scholar
  74. Requeña N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant– microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498CrossRefPubMedPubMedCentralGoogle Scholar
  75. Requeña N, Serrano E, Ocón Z, Breuninger M (2007) Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry 68(1):33–40CrossRefGoogle Scholar
  76. Santana MC (2017) Análise da comunidade de fungos em áreas de monoculturas e consórcio de Eucalyptus grandis e Acacia mangium. Dissertation, Universidade de São PauloGoogle Scholar
  77. Santana MC, Pereira APA, Forti VA, Cardoso EJBN (2016) Eucalypt as trap plant to capture associative fungi in soil samples from great depth. Int J Environ Agric Res 2:191–194Google Scholar
  78. Santos JC, Finlay RD, Tehler A (2006) Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient. New Phytol 172(1):159–168CrossRefGoogle Scholar
  79. Schenck NC, Perez Y (1990) Manual for the identification of VA mycorrhizal fungi, vol 286. Synergistic, GainesvilleGoogle Scholar
  80. Shah F, Nicolás C, Bentzer J, Ellström M, Smits M, Rineau F et al (2016) Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol 209(4):1705–1719CrossRefGoogle Scholar
  81. Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26(1):39–60CrossRefGoogle Scholar
  82. Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388(6642):579CrossRefGoogle Scholar
  83. Siqueira JO, Lambais MR, Stürmer SL (2002) Fungos micorrízicos arbusculares: origem e características dos fungos Glomaleanos. Biotecnol Ciên Desen 25:12–21Google Scholar
  84. Smith SE, Read DJ (2008) The symbionts forming arbuscular mycorrhizas. Mycor Symb 2:13–41CrossRefGoogle Scholar
  85. Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic, CambridgeGoogle Scholar
  86. Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250CrossRefGoogle Scholar
  87. Souza LABD, Bonnassis PAP, Silva Filho GN, Oliveira VLD (2008) New isolates of ectomycorrhizal fungi and the growth of eucalypt. Pesqui Agropecu Bras 43(2):235–241CrossRefGoogle Scholar
  88. Souza VC, Silva RA, Cardoso GD, Barreto AF (2006) Estudos sobre fungos micorrízicos. R Bras Eng Agríc Ambiental 10(3):612–618CrossRefGoogle Scholar
  89. Steffen RB, Antoniolli ZI, Steffen GPK, Eckhardt DP (2010) Micorrização das mudas de Eucalyptus grandis Hill ex Maiden comercializadas no município de Santa Maria, RS. Ciên Natura 32(1):25–35Google Scholar
  90. Stürmer SL (2012) A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota. Mycorrhiza 22(4):247–258CrossRefGoogle Scholar
  91. Suz LM, Azul AM, Morris MH, Bledsoe CS, Martín MP (2008) Morphotyping and molecular methods to characterize ectomycorrhizal roots and hyphae in soil. In: Molecular mechanisms of plant and microbe coexistence. Springer, Berlin, pp 437–474CrossRefGoogle Scholar
  92. Taylor MK, Lankau RA, Würzburger N (2016) Mycorrhizal associations of trees have different indirect effects on organic matter decomposition. J Ecol 104(6):1576–1584CrossRefGoogle Scholar
  93. Tedersoo L, Brundrett MC (2017) Evolution of ectomycorrhizal symbiosis in plants. In: Biogeography of mycorrhizal symbiosis. Springer, Cham, pp 407–467CrossRefGoogle Scholar
  94. Torrecillas E, Alguacil MM, Roldán A (2012) Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies. Appl Environ Microbiol 78(17):6180–6186CrossRefPubMedPubMedCentralGoogle Scholar
  95. van Der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205(4):1406–1423CrossRefGoogle Scholar
  96. Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12(11):3085–3095CrossRefGoogle Scholar
  97. Vesk PA, Ashford AE, Markovina AL, Allaway WG (2000) Apoplasmic barriers and their significance in the exodermis and sheath of Eucalyptus pilularisPisolithus tinctorius ectomycorrhizas. New Phytol 145(2):333–346CrossRefGoogle Scholar
  98. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16(5):299–363CrossRefGoogle Scholar
  99. Willis A, Rodrigues BF, Harris PJ (2013) The ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32(1):1–20CrossRefGoogle Scholar
  100. Yin H, Wheeler E, Phillips RP (2014) Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biol Biochem 78:213–221CrossRefGoogle Scholar
  101. Zheng L, Zhao X, Zhu G, Yang W, Xia C, Xu T (2017) Occurrence and abundance of ammonia-oxidizing archaea and bacteria from the surface to below the water table, in deep soil, and their contributions to nitrification. Microb Ope 6(4):e00488CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Maiele Cintra Santana
    • 1
    Email author
  • Arthur Prudêncio de Araujo Pereira
    • 1
    • 2
  • Bruna Andréia de Bacco Lopes
    • 1
  • Agnès Robin
    • 1
    • 3
  • Antonio Marcos Miranda Silva
    • 1
  • Elke Jurandy Bran Nogueira Cardoso
    • 1
  1. 1.Department of Soil ScienceUniversity of São Paulo, “Luiz de Queiroz” College of AgriculturePiracicabaBrazil
  2. 2.Soil Science Department (Pici Campus)Federal University of CearáFortalezaBrazil
  3. 3.Eco & Sols, Univ. Montpellier, CIRAD, INRA, IRD, Montpellier SupAgroMontpellierFrance

Personalised recommendations