Advertisement

Biological Nitrogen Fixation (BNF) in Mixed-Forest Plantations

  • Sergio Miana de Faria
  • Fabiano de Carvalho Balieiro
  • Ranieri Ribeiro Paula
  • Felipe Martini Santos
  • Jerri Edson ZilliEmail author
Chapter
  • 13 Downloads

Abstract

Nitrogen (N) supply is one of the key factors for the success of forest plantations and the search for strategies that allow constant N inputs with reasonable cost is desirable. The ability to fix and accumulate large amounts of N confers adaptive characteristics to the legumes that excel over other species. Here we address the biological nitrogen fixation (BNF) as an ecological strategy in mixed-forest plantations, allowing N fixation to act positively on the development of non-N2-fixing species. We include a brief description on the BNF establishment and the taxonomy and efficiency of the relevant bacteria. In Brazil, the contribution of BNF in mixed-forest plantations, mainly the ones between Eucalyptus spp. and Acacia spp., has demonstrated that their use is improving the quality of the soil organic matter and the N status of the system. The productivity of the non-N2-fixing species increases, especially in oligotrophic soils, varying from 2 to 90%. Normally, the BNF contribution is higher in mixed plantations than in monocultures and the amount of biologically fixed N makes up 50–60 kg ha−1 year−1. The studies on nitrogen-fixing tree species and mixed-species stands recently were intensified. However, large-scale use of mixed forest plantations is still challenging.

Keywords

Acacia spp. Bacterial association Diazotrophic bacteria Nitrogen cycling Forest sustainability 

References

  1. Aguiar JA, Barbosa RI, Barbosa JB, Mourão M Jr (2014) Invasion of Acacia mangium in Amazonian savannas following planting for forestry. Plant Ecol Divers 7(1–2):359–369CrossRefGoogle Scholar
  2. Allen ON, Allen EK (1981) The leguminosae: a source book of characteristics use and nodulation. University of Wisconsin Press, Wisconsin, p 812CrossRefGoogle Scholar
  3. Andrade AB, Costa GS, Faria SM (2000) Deposição e decomposição da serapilheira em povoamentos de Mimosa caesalniifolia, Acacia mangium e Acacia holosericea com quatro anos de idade em Planossolo. Rev Bras Ciênc Solo 24:777–785CrossRefGoogle Scholar
  4. Andrews M, Andrews ME (2017) Specificity in legume-rhizobia symbioses. Int J Mol Sci 18(4):705CrossRefPubMedPubMedCentralGoogle Scholar
  5. Balieiro FC, Dias FC, Franco AA, Campello EFC, Faria SM (2004) Acúmulo de nutrientes na parte aérea, na serapilhiera acumulada sobre o solo e decomposição de filódios de Acacia mangium Willd. Ciência Florestal 14:59–65CrossRefGoogle Scholar
  6. Barberi A, Carneiro MAC, Moreira FMS, Siqueira JO (1998) Nodulação em leguminosas florestais em viveiros no Sul de Minas Gerais. Cerne 4:145–153Google Scholar
  7. Batterman SA, Hedin LO, van Breugel M, Ransijn J, Craven DJ, Hall JS (2013) Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502:224–227CrossRefPubMedPubMedCentralGoogle Scholar
  8. Binkley D, Giardina C (1997) Nitrogen fixation in tropical forest plantations. In: EKS N, Brown AG (eds) Management of Soil, nutrients and water in tropical plantation forests. Australian Centre for International Agricultural Research, Canberra, pp 297–337Google Scholar
  9. Boddey RM, Peoples M, Palmer B, Dart P (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosystems 57:235–270CrossRefGoogle Scholar
  10. Bontemps C, Rogel MA, Wiechmann A, Mussabekova A, Moody S, Simon MF, Moulin L, Elliott GN, Lacercat-Didier L, Dasilva C et al (2016) Endemic Mimosa species from Mexico prefer alpha-proteobacterial rhizobial symbionts. New Phytol 209:319–333CrossRefGoogle Scholar
  11. Bouillet JP, Laclau JP, Gonçalves JDM, Moreira MZ, Trivelin PCO et al (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil: 2: nitrogen accumulation in the stands and biological N2 fixation. For Ecol Manag 255(12):3918–3930CrossRefGoogle Scholar
  12. Bouillet J-P, Laclau J-P, Gonçalves JLM, Voigtlaender M, Gava JL, Leite FP, Hakamada R, Mareschal L, Mabiala A, Tardy F, Levillain J, Deleporte P, Epron D, Nouvellon Y (2013) Eucalyptus and Acacia tree growth over entire rotation in single- and mixed-species plantations across five sites in Brazil and Congo. Forest Ecology and Management 301:89–101CrossRefGoogle Scholar
  13. Bournaud C, de Faria SM, dos Santos JMF, Tisseyre P, Silva M, Chaintreuil C, Gross E, James EK, Prin Y, Moulin L (2013) Burkholderia species are the most common and preferred nodulating symbionts of the Piptadenia group (tribe Mimoseae). PLoS One 8:e63478CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bournaud C, James EK, de Faria SM, Lebrun M, Melkonian R, Duponnois R, Tisseyre P, Moulin L, Prin Y (2017) Interdependency of efficient nodulation and arbuscular mycorrhization in a Brazilian legume tree . Plant, Cell & Environment.Google Scholar
  15. BRAZIL. Ministério da Agricultura, Pecuária e do Abastecimento (2011) INSTRUÇÃO NORMATIVA SDA N° 13, DE 24 DE MARÇO DE 2011. http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-sda-13-de-24-03-2011-inoculantes.pdf
  16. Brockwell J, Searle SD, Jeavons AL, Waayers M (2005) Nitrogen fixation in acacias: an untapped resource for sustainable plantations, farm, forestry and land reclamation. ACIAR Monogr 115:132Google Scholar
  17. Balieiro FC, Tonini H, Lima RA (2018) Produção Científica Brasileira (2007-2016) sobre Acacia mangium Willd.: estado da arte e reflexões. Cad Ciên Tecnol 35(1):37–52Google Scholar
  18. Campelo AB, Dobereiner J (1969) Estudo sobre a inoculação cruzada de algumas leguminosas florestais. Pesq Agrop Brasileira 4:67–72Google Scholar
  19. Canosa GA, de Faria SM, de Moraes LFD (2012) Leguminosas florestais da Mata Atlântica brasileira fixadoras de nitrogênio atmosférico Comunicado técnico 144, EMBRAPA Seropédica RJ p 1–12Google Scholar
  20. Carvalho PER (2005) Taxi-branco. Embrapa Florestas, Colombo, p 11. Embrapa Florestas. Circular técnica, 111Google Scholar
  21. Carvalho WD, Mustin K (2017) The highly threatened and little known Amazonian savannahs. Nat Ecol Evol 1:0100CrossRefGoogle Scholar
  22. Castro AWV, Yared JAG, Alves RNB, Silva LS, Meirelles SMLB (1990) Comportamento silvicultural de Sclerolobium paniculatum (taxi-branco) no Cerrado amapaense. EMBRAPA-UEPAE Macapá, Macapá, p 4. (EMBRAPA-UEPAE Macapá. Comunicado técnico, 7)Google Scholar
  23. Chaer GM, Resende AS, Campello EFC, Boddey RM (2011) Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiol 31:139–149CrossRefGoogle Scholar
  24. Chalk PM (2016) The strategic role of 15N in quantifying the contribution of endophytic N2 fixation to the N nutrition of non-legumes. Symbiosis 69:63–80CrossRefGoogle Scholar
  25. Chalk PM, Peoples MB, McNeill AM, Boddey RM, Unkovich MJ, Gardener MJ et al (2014) Methodologies for estimating nitrogen transfer between legumes and companion species in agro-ecosystems: a review of 15N-enriched techniques. Soil Biol Biochem 73:10–21CrossRefGoogle Scholar
  26. Chen W, James EK, Coenye T, Chou J, Barrios E, de Faria SM, Elliott GN et al (2006) Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 56:1847–1851CrossRefGoogle Scholar
  27. Clúa J, Roda C, Zanetti M, Blanco F (2018) Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis. Genes 9(3):125CrossRefPubMedPubMedCentralGoogle Scholar
  28. Coba de la Peña T, Fedorova E, Pueyo JJ, Lucas MM (2018) The symbiosome: legume and rhizobia co-evolution toward a nitrogen-fixing organelle? Front Plant Sci 8:2229CrossRefPubMedPubMedCentralGoogle Scholar
  29. Coelho SRF, Gonçalves JLM, Mello SLM, Moreira RM, Silva EV, Laclau JP (2007) Crescimento, nutrição e fixação biológica de nitrogênio em plantios mistos de eucalipto e leguminosas arbóreas. Pesq Agrop Brasileira 42(6):59–768CrossRefGoogle Scholar
  30. Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agri Ecosys Environ Amsterdam 102:279–297CrossRefGoogle Scholar
  31. de Faria SM, Lewis GP, Sprent JI, Sutherland JM (1989) Occurrence of nodulation in the leguminosae. New Phytol 111:607–619CrossRefGoogle Scholar
  32. de Faria SM, de Lima HC, Olivares FL, Melo RB, Xavier RP (1999) Nodulação em espécies florestais, especificidade hospedeira e implicações na sistemática de leguminosae. Inter-relação fertilidade, biologia do solo e nutrição de plantas. In: Siqueira JO, Moreira FMS, Lopes AS, Guilherme LRG, Faquin V, Neto AEF, Carvalho JG (eds) . Sociedade Brasileira de Ciência do Solo Universidade federal de Lavras, Departamento de Ciência do Solo, Lavras, pp 667–686Google Scholar
  33. Delnatte C, Meyer J-Y (2012) Plant introduction, naturalization, and invasion in French Guiana (South America). Biol Invasions 14:915–927CrossRefGoogle Scholar
  34. Diagne N, Thioulouse J, Sanguin H, Prin Y, Krasova-Wade T, Sylla S, Galiana A, Baudoin E, Neyra M, Svistoonoff S, Lebrun M, Duponnois R (2013) Ectomycorrhizal diversity enhances growth and nitrogen fixation of Acacia mangium seedlings. Soil Biol Biochem 57:468–476CrossRefGoogle Scholar
  35. Doyle JJ (2011) Phylogenetic perspectives on the origin of nodulation. Mol Plant Microbe Interact J 24:1289–1295CrossRefGoogle Scholar
  36. Doyle JJ (2016) Chasing unicorns: nodulation origins and the paradox of novelty. Am J Bot 103(11):1865–1868CrossRefGoogle Scholar
  37. de Faria SM, Diedhiou AG, de Lima HC, Ribeiro RD, Galiana A, Castilho AF, Henriques JC (2010) Evaluating the nodulation status of leguminous species from the Amazonian forest of Brazil. Journal of Experimental Botany 61(11):3119–3127CrossRefGoogle Scholar
  38. Faria SM, Franco AA, Jesus RM, Menandro MS, Baitello JB, Mucci ESF, Dobereiner J, Sprent JI (1984) New Nodulating Legume Trees From South-East Brazil. New Phytologist 98(2):317–328Google Scholar
  39. Faria SMD, McInroy SG, Sprent JI (1987) The occurrence of infected cells, with persistent infection threads, in legume root nodules. Can J Bot 65(3):553–558CrossRefGoogle Scholar
  40. Faria SM, Lewis GP, Sprent JI, Sutherland JM (1989) Occurrence Of Nodulation In The Leguminosae. New Phytologist 111(4):607–619Google Scholar
  41. Forrester DI, Bauhus J, Cowie AL (2005) On the success and failure of mixed-species tree plantations: lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 209:147–155CrossRefGoogle Scholar
  42. Forrester DI, Schortemeyer M, Stock WD, Bauhus J, Khanna PK, Cowie AL (2007) Assessing nitrogen fixation in mixed-and single-species plantations of Eucalyptus globulus and Acacia mearnsii. Tree Physiol 27(9):1319–1328CrossRefGoogle Scholar
  43. Founoune H, Duponnois R, BÂ AM (2002) Ectomycorrhization of Acacia mangium Willd. and Acacia holosericea A. Cunn. ex G. Don in Senegal. Impact on plant growth, populations of indigenous symbiotic microorganisms and plant parasitic nematodes. J Arid Environ 50:325–332CrossRefGoogle Scholar
  44. Franco AA, Faria SM (1997) The contribution of N2-fixing tree legumes to land reclamation and sustainability in the tropics. Soil Biol Biochem 29:897–903CrossRefGoogle Scholar
  45. Franco AA, Campello EFC, Dias LE, Faria SM (1995) Use of nodulated and mycorrhizal legume trees of revegetation of residues from bauxite mining. In: international symposium on sustainable agriculture for the tropics—the role of biological nitrogen fixation. Embrapa Agrobiologia/Universidade Federal Rural do Rio de Janeiro, Angra dos Reis. Anais. Rio de Janeiro, pp 80–81Google Scholar
  46. Galiana A, Balle P, N’guessan kang A, Domenach AM (2002) Nitrogen fixation estimated by the 15N natural abundance method in Acacia mangium Willd. inoculated with Bradyrhizobium sp. and grown in silvicultural conditions. Soil Biol Biochem 34:251–262CrossRefGoogle Scholar
  47. Galiana A, Bouillet JP, Ganry F (2004) The importance of the biological nitrogen fixation by trees in agroforestry. In: Carsky RJ, Sanginga N, Schulz S, Douthwaite B (eds) Symbiotic nitrogen fixation: prospects for enhanced application in tropical agriculture. Baba Barkha Nath Printers, New Delhi, pp 185–199Google Scholar
  48. Gehring C, Vlek PLG (2004) Limitations of the 15N natural abundance method for estimating biological nitrogen fixation in Amazonian forest legumes. Basic Appl Ecol 5:567–580CrossRefGoogle Scholar
  49. Gehring C, Vlek PLG, de Souza LAG, Denich M (2005) Biological nitrogen fixation in secondary regrowth and mature rainforest of Central Amazonia. Agric Ecosyst Environ 111:237–2452CrossRefGoogle Scholar
  50. Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5(1):29–56CrossRefGoogle Scholar
  51. Griffin AR, Chi NQ, Harbard JL, Son DH, Harwood CE et al (2015) Breeding polyploid varieties of tropical acacias: progress and prospects. South Forests 77(1):41–50CrossRefGoogle Scholar
  52. Germon A, Guerrini IA, Bordron B, Bouillet J-P, Nouvellon Y, de Moraes Gonçalves JL, Jourdan C, Paula RR, Laclau J-P, (2018) Consequences of mixing Acacia mangium and Eucalyptus grandis trees on soil exploration by fine-roots down to a depth of 17 m. Plant and Soil 424 (1-2):203–220CrossRefGoogle Scholar
  53. Harwood CE, Nambiar EKS (2014) Productivity of acacia and eucalypt plantations in Southeast Asia. 2. Trends and variations. Int For Rev 16(2):249–260Google Scholar
  54. He XH, Critchley C, Bledsoe CS (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Review Plant Sci 22:531–567CrossRefGoogle Scholar
  55. Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203CrossRefGoogle Scholar
  56. Hungria M, Mendes IC (2015) Nitrogen fixation with soybean: the perfect symbiosis? In: de Bruijn FJ (ed) Biological nitrogen fixation. Wiley, Hoboken, pp 1009–1024.  https://doi.org/10.1002/9781119053095.ch99CrossRefGoogle Scholar
  57. Jesus EC, Schiavo JA, Faria SM (2005) Dependencia de micorrizaspara a nodulaçao de leguminosas arboreas tropicais. Revista Arvore 29:545–552CrossRefGoogle Scholar
  58. Khanna PK (1998) Nutrient cycling under mixed-species tree systems in Southeast Asia. Agrofor Syst 38:99–120CrossRefGoogle Scholar
  59. Krisnawati H, Kallio M, Kanninen M (2011) Acacia mangiumWilld.: ecology,silviculture, and productivity. CIFOR, Bogor, Indonesia.Google Scholar
  60. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17:6–15CrossRefGoogle Scholar
  61. Laclau JP, Ranger J, de Moraes Gonçalves JL, Maquère V, Krusche AV et al (2010) Biogeochemical cycles of nutrients in tropical Eucalyptus plantations: main features shown by intensive monitoring in Congo and Brazil. For Ecol Manag 259(9):1771–1785CrossRefGoogle Scholar
  62. Lawrie AC (1981) Nitrogen Fixation by Native Australian Legumes. Australian Journal of Botany 29(2):143CrossRefGoogle Scholar
  63. Le Maitre DC, Gaertner M, Marchante E, Ens EJ, Holmes PM, Pauchard et al (2011) Impacts of invasive Australian acacias: implications for management and restoration. Divers Distrib 17(5):1015–1029CrossRefGoogle Scholar
  64. Legume Phylogeny Working Group (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66(1):44–77.  https://doi.org/10.12705/661CrossRefGoogle Scholar
  65. Lim S, Gan K, Tan Y (2011) Properties of Acacia mangium planted in Peninsular Malaysia. In: ITTO project on improving utilization and value adding of plantation timbers from sustainable sources in Malaysia. Selangor: Forest Research Institute of Malaysia. p. 1–6.Google Scholar
  66. Lorenzi H (1992) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas no Brasil. Editora Plantarum, Nova Odessa, p 368Google Scholar
  67. Mafongoya PL, Giller KE, Palm CA (1998) Decomposition and nitrogen release patterns of tree prunings and litter. Agrofor Syst 38:77–97CrossRefGoogle Scholar
  68. Monteiro SEM (1990a) Resposta de leguminosas arbóreas à inoculação com rizóbio e fungos micorrízicos em solo ácido (Tese de Doutorado). Universidade Federal Rural do Rio de Janeiro, Itaguaí, p 221Google Scholar
  69. Monteiro SEM (1990b) Resposta de leguminosas arbóreas à inoculação com rizóbio e fungos micorrízicos em solo ácido (Tese de Doutorado). Universidade Federal Rural do Rio de Janeiro, Itaguaí, p 221Google Scholar
  70. Moraes Gonçalves JL, Alvares CA, Higa AR, Silva LD, Alfenas AC et al (2013) Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. For Ecol Manag 301:6–27CrossRefGoogle Scholar
  71. Morais TMO, Montagner AEAD (2015) Infestação por Acacia mangium wild em Sistema Silvipastoril, após fogo no Cerrado Amapaense. I Jornada Cientifíca da Embrapa AmapáGoogle Scholar
  72. Moreira FMS, Siqueira JO (2006) Fixação biológica de nitrogênio atmosférico. In: Moreira FMS, Siqueira JO (eds) Microbiologia e bioquímica do solo. Editora Universidade Federal de Lavras, Lavras, pp 449–542Google Scholar
  73. Moreira FM, da Silva MF, Faria SM (1992) Occurrence of nodulation in legume species in the Amazon region of Brazil. New Phytol 121:563–570CrossRefGoogle Scholar
  74. Munroe JW, Isaac ME (2014) N2-fixing trees and the transfer of fixed-N for sustainable agroforestry: a review. Agron Sustain Dev 34:417–427CrossRefGoogle Scholar
  75. Nardoto GB, Quesada CA, Patiño S, Saiz G, Baker TR, Schwarz M, Schrodt F, Feldpausch TR, Domingues TF, Marimon BS, Marimon B-H, Vieira ICG, Silveira M, Bird MI, Phillips OL, Lloyd J, Martinelli LA (2014) Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil N: N measurements. Plant Ecology & Diversity 7(1-2):173–187Google Scholar
  76. Narducci TS (2014) Recuperação de áreas de reserva legal: influência da densidade nos indicadores ambientais do plantio de Sclerolobium paniculatum Vogel. Dissertação (Mestrado em Ciências Ambientais). Instituto de Geociências, Universidade Federal do Pará, Belém-PA, p 77. Programa de Pós-Graduação em Ciências AmbientaisGoogle Scholar
  77. Natelhoffer KJ, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 abundance in forest soil organic matter. Soil Sci. Soc. Am. J., 52:1633–1640Google Scholar
  78. Oliveira Júnior JQ, Jesus EC, Lisboa FJ, Berbarac RLL, Faria SM (2016) Nitrogen-fixing bacteria and arbuscular mycorrhizal fungi in Piptadenia gonoacantha (Mart.) Macbr. Braz J Microbiol 48:95–100CrossRefGoogle Scholar
  79. Paula RR, Bouillet J-P, Ocheuze Trivelin PC, Zeller B, Gonçalves JLM, Nouvellon Y, Bouvet J-M, Plassard C, Laclau J-P (2015) Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest. Soil Biology and Biochemistry 91:99–108Google Scholar
  80. Paula RR, Bouillet J-P, de Moraes Gonçalves JL, Ocheuze Trivelin PC, de C. Balieiro F, Nouvellon Y, de C. Oliveira J, de Deus Júnior JC, Bordron B, Laclau J-P (2018) Nitrogen fixation rate of Acacia mangium Wild at mid rotation in Brazil is higher in mixed plantations with Eucalyptus grandis Hill ex Maiden than in monocultures. Annals of Forest Science 75(1)Google Scholar
  81. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775CrossRefPubMedPubMedCentralGoogle Scholar
  82. Parrota JA, Knowles OH (1999) Restoring of tropical moist forest on bauxite-mined lands in Brazilian Amazon. Restor Ecol 7(2):103–116CrossRefGoogle Scholar
  83. Parrota JA, Knowles OH, Wunderle JM Jr (1997) Development of floristic diversity in 10-year-old restoration forests on a bauxite mined site in Amazonia. For Ecol Manag 99:21–42CrossRefGoogle Scholar
  84. Parrotta JA, Baker DD, Fried M (1996) Changes in dinitrogen fixation in maturing stands of Casuarina equisetifolia and Leucaena leucocephala. Can J For Res 26:1684–1691CrossRefGoogle Scholar
  85. Patreze CM, Cordeiro L (2004) Nitrogen-fixing and vesicular–arbuscular mycorrhizal symbioses in some tropical legume trees of tribe Mimoseae. For Ecol Manag 196:275–285CrossRefGoogle Scholar
  86. Paula, RR (2015) Processos de transferência de N em curto e longo prazo em plantios mistos de Eucalyptus grandis e Acacia mangium. PhD thesis. São Paulo UniversityGoogle Scholar
  87. Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34:17–42CrossRefGoogle Scholar
  88. Peoples MB, Faizah AW, Rerkasem B, Herridge DF (1989) Methods for evaluating nitrogen fixation by nodulated legumes in the field. ACIAR monograph, N° 11. ACIAR 1989:76Google Scholar
  89. Peoples MB, Palmer B, Lilley DM, Duc LM, Herridge DF (1996) Application of 15N and xylem ureide methods for assessing N2 fixation of three shrub legumes periodically pruned for forage. Plant Soil 182:125–137CrossRefGoogle Scholar
  90. Peoples MB, Chalk PM, Unkovich MJ, Boddey RM (2015) Can differences in 15N natural abundance be used to quantify the transfer of nitrogen from legumes to neighbouring non-legume plant species? Soil Biol Biochem 87:97–109CrossRefGoogle Scholar
  91. Pires R, Junior FBR, Zilli JE, Fischer D, Hofmann A, James EK, Simon MF (2018) Soil characteristics determine the rhizobia in association with different species of Mimosa in Central Brazil. Plant Soil 423(1–2):411CrossRefGoogle Scholar
  92. Piotto D, Montagnini F, Thomas W, Ashton M, Oliver C (2009) Forest recovery after swidden cultivation across a 40-year chronosequence in the Atlantic forest of southern Bahia, Brazil. Plant Ecology 205(2):261–272CrossRefGoogle Scholar
  93. Polhill RM, Raven PH, Stirton CH (1981) Evolution and systematics of the Leguminosae. In: Polhill RM, Raven PH (eds) Advances in legume systematics. Royal Botanic Gardens, Kew, London, pp 1–26Google Scholar
  94. Postgate J (1992) The Leeuwenhoek lecture 1992. Bacterial evolution and the nitrogen fixing plant. Phil Trans R Soc Lond B 338:409–416CrossRefGoogle Scholar
  95. Rachid CTCC, Balieiro FC, Peixoto RS, Pinheiro YAS, Piccolo MC, Chaer GM, Rosado AS (2013) Mixed plantations can promote microbial integration and soil nitrate increases with changes in the N cycling genes. Soil Biology and Biochemistry 66:146–153CrossRefGoogle Scholar
  96. Raymond J, Siefert JL, Staples CR, Blankship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554CrossRefGoogle Scholar
  97. Reis FB Jr, Simon MF, Gross E, Boddey RM, Elliott GN, Neto NE et al (2010) Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytol 186(4):934–946CrossRefGoogle Scholar
  98. Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30:1992–1208CrossRefGoogle Scholar
  99. Rolim SG, Piotto D eds. (2018) Silvicultura e tecnologia de espécies da Mata Atlântica. Belo Horizonte, MG: Editora Rona.Google Scholar
  100. Sakrouhi I, Belfquih M, Sbabou L, Moulin P, Bena G, Filali-Maltouf A, Le Quéré A (2016) Recovery of symbiotic nitrogen fixing acacia rhizobia from Merzouga Desert sand dunes in South East Morocco – Identification of a probable new species of Ensifer adapted to stressed environments. Systematic and Applied Microbiology 39(2):122–131Google Scholar
  101. Santos FM, Balieiro FC, Ataíde DHS, Diniz AR, Chaer GM (2016) Dynamics of aboveground biomass accumulation in monospecific and mixed-species plantations of Eucalyptus and Acacia on a Brazilian sandy soil. Forest Ecol Manag 363:86–97CrossRefGoogle Scholar
  102. Santos FM, Balieiro F de C, Fontes MA, Chaer GM, (2018) Understanding the enhanced litter decomposition of mixed-species plantations of Eucalyptusand Acacia mangium. Plant and Soil 423 (1-2):141–155Google Scholar
  103. Schiavo JÁ, Martins MA (2002) Produção de mudas de Acácia colonizadas com micorriza e rizóbio em diferentes recipientes. Pesq Agrop Brasileira 38:173–178CrossRefGoogle Scholar
  104. Silva K, Meyer S, Rouws LF, Farias EM et al (2014) Bradyrhizobium ingae sp. nov., isolated from effective nodules of Inga laurina grown in Cerrado soil. Int J Syst Evol Microbiol 64(10):3395–3401CrossRefGoogle Scholar
  105. Silva VC, Alves PAC, Rhem MFK, dos Santos JMF, James EK, Gross E (2018) Brazilian species of Calliandra Benth. (tribe Ingeae) are nodulated by diverse strains of Paraburkholderia. Syst Appl Microbiol 41(3):241–250CrossRefGoogle Scholar
  106. Stape JL, Binkley D, Ryan MG, Fonseca S, Loos RA, Takahashi EN, Silva CR, Silva SR, Hakamada RE, Ferreira JMA, Lima AMN, Gava JL, Leite FP, Andrade HB, Alves JM, Silva GGC, Azevedo MR (2010) The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand uniformity on wood production. Forest Ecology and Management 259(9):1684–1694CrossRefGoogle Scholar
  107. Souza M, Magliano M, Camargos J (1997) Madeiras tropicais brasileiras. IBAMA. Laboratório de Produtos Florestais, Brasília, DF, p 152Google Scholar
  108. Souza MH, Magliano MM, Camargos JAA, Souza MR (2002) Madeira tropicais brasileiras, 2nd edn. LPF/IBAMA, Brasília, p 152Google Scholar
  109. Souza AO, Chaves MPSR, Barbosa RI, Clement CR (2018) Local ecological knowledge concerning the invasion of Amerindian lands in the northern Brazilian Amazon by Acacia mangium (Willd.). J Ethnobiol Ethnomed 14:33CrossRefPubMedPubMedCentralGoogle Scholar
  110. Sprent JI (1993) The role of the nitrogen fixation in primary succession on land. In: Miles J, Walton DWH (eds) Primary succession on land. Blackwell Scientific, Oxford, pp 209–219Google Scholar
  111. Sprent JI (1994) Evolution and diversity in the legume-rhizobium symbiosis: chaos theory? Plant Soil 161:1–10CrossRefGoogle Scholar
  112. Sprent JI (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol 174:11–25.  https://doi.org/10.1111/j.1469-8137.2007.02015.xCrossRefPubMedGoogle Scholar
  113. Sprent JI (2009) Legume nodulation: a global perspective. Wiley-Blackwell, West Sussex.  https://doi.org/10.1002/9781444316384CrossRefGoogle Scholar
  114. Sprent JI, Ardley J, James EK (2017) Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytol 215:40–56CrossRefGoogle Scholar
  115. Sutherland JM, Sprent LI (1993) Nitrogen fixation by legume trees. In: Subba Rao NS, Rodriguez-Barrueco C (eds) Symbioses in nitrogen-fixing trees. Oxford/IBH, New Delhi, pp 32–63Google Scholar
  116. Tchichelle SV, Epron D, Mialoundama F, Koutika LS, Harmand J-M, Bouillet J-P, Mareschal L, (2016) Differences in nitrogen cycling and soil mineralisation between a eucalypt plantation and a mixed eucalypt and plantation on a sandy tropical soil. Southern Forests: a Journal of Forest Science 79(1):1–8Google Scholar
  117. Tchichelle SV, Mareschal L, Koutika LS, Epron D (2017) Biomass production, nitrogen accumulation and symbiotic nitrogen fixation in a mixed-species plantation of eucalyptus and acacia on a poor tropical soil. Forest Ecol Management 403:103–111CrossRefGoogle Scholar
  118. Tonini H, Angelo DH, Conceicao JS, Herzog FA (2010) Silvicultura da Acacia mangium em Roraima. In: Tonini H, HalfelD-VIeira BA, SJR S (eds) Acacia mangium: características e seu cultivo em Roraima. Embrapa Informação Tecnológica e Embrapa Roraima, Brasília e Boa Vista, pp 76–9Google Scholar
  119. Unkovich MJ, Herridge D, Peoples MB, Cadisch G, Boddey B, Giller K, Alves B, Chalk P (2008) Measuring plant-associated nitrogen fixation in agricultural systems (ACIAR Monograph, 136). Australian Centre for International Agricultural Research, Canberra, p 258Google Scholar
  120. Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell Scientific, Oxford, p 164Google Scholar
  121. Vitousek PM et al (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45CrossRefGoogle Scholar
  122. Voigtlaender M, Laclau J-P, Gonçalves JLM, Piccolo MC, Moreira MZ, Nouvellon Y, Ranger J, Bouillet J-P (2012) Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant and Soil 352(1-2):99–111CrossRefGoogle Scholar
  123. Voigtlaender M, Brandani CB, Caldeira DRM, Tardy F, Bouillet J-P, Gonçalves JLM, Moreira MZ, Leite FP, Brunet D, Paula RR, Laclau J-P (2018) Nitrogen cycling in monospecific and mixed-species plantations of Acacia mangium and Eucalyptus at 4 sites in Brazil. Ann For Sci 75:14.  https://doi.org/10.1007/s13595-018-0695-9CrossRefGoogle Scholar
  124. Voigtlaender M, Brandani CB, Caldeira DRM, Tardy F, Bouillet J-P et al (2019) Nitrogen cycling in monospecific and mixed-species plantations of Acacia mangium and Eucalyptus at 4 sites in Brazil. For Ecol Manag 436:56–67CrossRefGoogle Scholar
  125. Winbourne JB, Feng A, Reynolds L, Piotto D, Hastings MG, Porder S (2018) Nitrogen cycling during secondary succession in Atlantic Forest of Bahia, Brazil. Scientific Reports 8(1)Google Scholar
  126. Yasmin K, Cadisch G, Baggs EM (2006) Comparing 15N-labelling techniques for enriching above- and below-ground components of the plant-soil system. Soil Biol Biochem 38:397–400CrossRefGoogle Scholar
  127. Zilli JE, Baraúna AC, da Silva K, de Meyer SE, Farias ENC, Kaminski PE, da Costa IB, Ardley JK, Willems A, Camacho NN et al (2014) Bradyrhizobium neotropical sp. nov., isolate from effective nodules of Centrolobium paraense. Int J Syst Evol Microbiol 64:3950–3957CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sergio Miana de Faria
    • 1
  • Fabiano de Carvalho Balieiro
    • 2
  • Ranieri Ribeiro Paula
    • 3
  • Felipe Martini Santos
    • 4
  • Jerri Edson Zilli
    • 1
    Email author
  1. 1.EMBRAPA AgrobiologyBrazilian Agricultural Research CorporationSeropédicaBrazil
  2. 2.EMBRAPA SoilsBrazilian Agricultural Research CorporationRio de JaneiroBrazil
  3. 3.Center for Agricultural Sciences and Engineering, Federal University of Espirito SantoAlegreBrazil
  4. 4.Federal Rural University of Rio de JaneiroSeropédicaBrazil

Personalised recommendations