Advertisement

Multifunctional Mixed-Forest Plantations: The Use of Brazilian Native Leguminous Tree Species for Sustainable Rural Development

  • Antonio Carlos Gama-RodriguesEmail author
Chapter
  • 11 Downloads

Abstract

Mixed-forest plantations have high potential to be an alternative to conventional monoculture systems to address environmental, social, and economic issues. This forest system can be considered as an adequate technique of climate-smart forestry. In this context, we focus on the Brazilian experience of the potential of mixed-species plantations with native tree species and N2-fixing leguminous species for timber and non-timber products, for the reclamation of degraded lands and for environmental services. In all Brazilian biomes there are many leguminous tree species which are suitable to produce timber and other products. Knowledge of their functional ecological traits is important to ensure the sustainability of the mixed-species plantations. The mixed plantation of six native leguminous hardwood species of Atlantic Forest performed better than pure plantations for many traits. Further, it caused positive changes in soil properties. The use of fast-growing N2-fixing leguminous trees associated with hardwood species showed viability for the reclamation of degraded lands. Agroforestry systems based on cacao (Theobroma cacao) are the best example for sustainability of mixtures of N2-fixing and non-N2-fixing tree species because of their high potential for sequestering carbon, recycling nutrients, and providing other environmental services. Thus, the sustainability of such mixtures can support farmers as managers of complex social-ecological systems increasing rural prosperity.

Keywords

Intercropped plantations Native trees Functional ecology Sustainability Ecological services 

References

  1. ABRAF (2013) Anuário Estatístico ABRAF 2013 ano base 2012. ABRAF, Brasília, p 148Google Scholar
  2. Aleixo S, Gama-Rodrigues AC, Costa MG, Sales MVS, Gama-Rodrigues EF, Marques JRB (2017) P transformations in cacao agroforests soils in the Atlantic forest region of Bahia, Brazil. Agrofor Syst 91:423–437CrossRefGoogle Scholar
  3. Aleixo S, Gama-Rodrigues AC, Gama-Rodrigues EF, Campello EFC, Silva EC, Furlan DA, Schripsema J (2019) Can tree legumes increase soil phosphorus availability? A link between the P and N cycles in the Brazilian Atlantic Forest. (in press)Google Scholar
  4. Almeida CMVC, Locatelli M, Lima AA, Xavier IP, Cidin ACM (2009) Diversidade de espécies arbóreas e potencial madeireiro em sistemas agrossilviculturais com cacaueiro em Ouro Preto do Oeste, vol 21. Agrotrópica, Rondônia, Brasil, pp 73–82Google Scholar
  5. Bianchi MO, Scoriza RN, Resende AS, Campello EFC, Correia MEF, Silva EMR (2017) Macrofauna edáfica como indicadora em revegetação com leguminosas arbóreas. Floresta e Ambiente 24:e00085714.  https://doi.org/10.1590/2179-8087.085714CrossRefGoogle Scholar
  6. Binkley D (1992) Mixture of nitrogen-fixing and non-nitrogen-fixing tree species. In: Cannell MGR, Malcolm DC, Robertson PA (eds) The ecology of mixed-species stands of trees. Blackwell Scientific Publications, Oxford, pp 99–123Google Scholar
  7. Bouillet JP, Laclau JP, Gonçalves JLM, Voigtlaender M, Gava JL, Leite FP, Hakamada R, Mareschal L, Mabiala A, Tardy F, Levillain J, Deleporte P, Epron D, Nouvellon Y (2013) Eucalyptus and Acacia tree growth over entire rotation in single-and mixed-species plantations across five sites in Brazil and Congo. Forest Ecol Manag 301:89–101CrossRefGoogle Scholar
  8. Canosa GA, Faria SM, Moraes LFD (2012) Leguminosas florestais da mata Atlântica brasileira fixadoras de nitrogênio atmosférico. Embrapa Agrobiologia. Comunicado Técnico 144:12Google Scholar
  9. Carvalho PER (2007) Paricá (Schizolobium amazonicum). Embrapa Florestas. Circular Técnica 142:8Google Scholar
  10. Chaer GM, Resende AS, Campello EFC, Faria SM, Boddey M (2011) Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiol 31:139–149CrossRefGoogle Scholar
  11. Cordeiro IMCC, Barros PLC, Lameira OA, Gazel Filho AB (2015) Avaliação de plantios de paricá Schizolobium parahyba var. amazonicum (Huber ex Ducke) Barneby de diferentes idades e sistemas de cultivo no município de aurora do Pará—PA (Brasil). Ciência Florestal 25:679–687CrossRefGoogle Scholar
  12. Costa MG, Gama-Rodrigues AC, Zaia FC, Gama-Rodrigues EF (2014) Leguminosas arbóreas para recuperação de áreas degradadas com pastagem em Conceição de Macabu, Rio de Janeiro, Brasil. Scientia Forestalis 42:101–112Google Scholar
  13. Cunha GM, Gama-Rodrigues AC, Gama-Rodrigues AC, Velloso ACX (2009) Biomassa e estoque de carbono e nutrientes em florestas montanas da Mata Atlântica na região norte do Estado do Rio de Janeiro. R Bras Ci Solo 33:1175–1185CrossRefGoogle Scholar
  14. Fontes AG, Gama-Rodrigues AC, Gama-Rodrigues EF, Sales MVS, Costa MG, Machado RCR (2014) Nutrient stocks in litterfall and litter in cocoa agroforests in Brazil. Plant Soil 383:313–335CrossRefGoogle Scholar
  15. Gama-Rodrigues AC (2011) Soil organic matter, nutrient cycling and biological dinitrogen-fixation in agroforestry systems. Agrofor Syst 81:191–193CrossRefGoogle Scholar
  16. Gama-Rodrigues AC, Barros NF (2002) Ciclagem de nutrientes em floresta natural e em plantios de eucalipto e de dandá no sudeste da Bahia, Brasil. R Árvore 26:193–207Google Scholar
  17. Gama-Rodrigues AC, Barros NF, Comerford NB (2007) Biomass and nutrient cycling in pure and mixed stands of native tree species in southeastern Bahia, Brazil. R Bras Ci Solo 31:287–298CrossRefGoogle Scholar
  18. Gama-Rodrigues AC, Barros NF, Mendonça ES (1999) R. Bras. Alterações edáficas sob plantios puros e misto de espécies florestais nativas do sudeste da Bahia, Brasil. R Bras Ci Solo 23:581–592CrossRefGoogle Scholar
  19. Gama-Rodrigues AC, Barros NF, Santos ML (2003) Decomposição e liberação de nutrientes do folhedo de espécies florestais nativas em plantios puros e mistos no sudeste da Bahia. R Bras Ci Solo 27:1021–1031CrossRefGoogle Scholar
  20. Gama-Rodrigues EF, Gama-Rodrigues AC, Barros NF, Moço MKS (2011a) The relationships between microbiological attributes and soil and litter quality in pure and mixed stands of native tree species in southeastern Bahia, Brazil. Can J. Microbiol 57:887–895CrossRefGoogle Scholar
  21. Gama-Rodrigues EF, Gama-Rodrigues AC, Nair PKR (2011b) Soil carbon sequestration in cacao agroforestry systems: a case study from Bahia, Brazil. In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems: opportunities and challenges, advances in agroforestry, vol vol. 8. Springer/Dordrecht Heidelberg, London/New York, pp 85–99CrossRefGoogle Scholar
  22. Gama-Rodrigues EF, Gama-Rodrigues AC, Paulino GM, Franco AA (2008) Atributos químicos e microbianos de solos sob diferentes coberturas vegetais no norte do Estado do Rio de Janeiro. R Bras Ci Solo 32:1521–1530CrossRefGoogle Scholar
  23. Garrido MAO, Poggiani F (1982) Avaliação da quantidade e do conteúdo de nutrientes do folhedo de alguns povoamentos puros e misto de espécies indígenas, vol vol. 15/16. Silvicultura São Paulo, Piracicaba, pp 1–22Google Scholar
  24. Hall JS, Ashton MS (2016) Guide to early growth and survival on plantations of 64 tree species native to Panamá and the Neotropics. Smithsonian Tropical Research Institute, Republic of Panama, p 173Google Scholar
  25. Kato OR, Kato MSA, Carvalho CJR, Figueiredo RO, Camarão AP, Sá TDA, Denich M, Vielhauer K (2006) Uso de agroflorestas no manejo de florestas secundárias. In: Gama-Rodrigues AC, Barros NF, Gama-Rodrigues EF et al (eds) Sistemas agroflorestais: bases científicas para o desenvolvimento sustentável. Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, pp 119–158Google Scholar
  26. Kelty MJ (2006) The role of species mixtures in plantation forestry. Forest Ecol Manage 233:195–204CrossRefGoogle Scholar
  27. Leão AC, Silva LAM (1991) Bioelementos na cobertura vegetal e no solo do ecossistema dos tabuleiros costeiro do sudeste da Bahia, Brasil. Agrotrópica 3:87–92Google Scholar
  28. Liu CLC, Kuchma O, Krutovsky KV (2018) Mixed-species versus monocultures in plantation forestry: development, benefits, ecosystem services and perspectives for the future. Glob Ecol Conserv 15:e00419.  https://doi.org/10.1016/j.gecco.2018.e00419CrossRefGoogle Scholar
  29. Manhães CMC, Gama-Rodrigues EF, Moço MKS, Gama-Rodrigues AC (2013) Meso- and macrofauna in the soil and litter of leguminous trees in a degraded pasture in Brazil. Agrofor Syst 87:993–1004CrossRefGoogle Scholar
  30. Moço MKS, Gama-Rodrigues EF, Gama-Rodrigues AC, Machado RCR, Baligar VC (2010) Relationships between invertebrate communities, litter quality and soil attributes under different cacao agroforestry systems in the south of Bahia, Brazil. Appl Soil Ecol 46:347–354CrossRefGoogle Scholar
  31. Monroe PHM, Gama-Rodrigues EF, Gama-Rodrigues AC, Marques JRB (2016) Soil carbon stocks and origin under different cacao agroforestry systems in Southern Bahia, Brazil. Agr Ecosyst Environ 221:99–108CrossRefGoogle Scholar
  32. Müller MW, Gama-Rodrigues AC (2012) Sistemas agroflorestais com cacaueiro. In: Valle RR (ed) Ciência, tecnologia e manejo do cacaueiro. CEPLAC/CEPEC/SEFIS, Brasília, pp 407–435Google Scholar
  33. Nunes DAD, Gama-Rodrigues EF, Barreto PAB, Gama-Rodrigues AC, Monroe PHM (2016) Carbon and nitrogen mineralization in soil of leguminous trees in a degraded pasture in northern Rio de Janeiro, Brazil. J For Res 27:91–99CrossRefGoogle Scholar
  34. Odum EP (1983) Ecologia, 1.ed. edn. Guanabara Koogan S.A, Rio de Janeiro, p 434Google Scholar
  35. Oliveira PHG, Gama-Rodrigues AC, Gama-Rodrigues EF, Sales MVS (2018) Litter and soil-related variation in functional group abundances in cacao agroforests using structural equation modeling. Ecol Indic 84:254–262CrossRefGoogle Scholar
  36. Petit B, Montagnini F (2006) Growth in pure and mixed plantations of tree species used in reforesting rural areas of the humid region of Costa Rica, Central America. For Ecol Manage 233:338–343CrossRefGoogle Scholar
  37. Piotto D (2008) A meta-analysis comparing tree growth in monocultures and mixed plantations. For Ecol Manage 255:781–786CrossRefGoogle Scholar
  38. Piotto D, Craven D, Montagnini F, Alice F (2010) Silvicultural and economic aspects of pure and mixed native tree species plantations on degraded pasturelands in humid Costa Rica. New For 39:369–385CrossRefGoogle Scholar
  39. Pretzsch H, Forrester DI, Bauhus J (2017) Mixed-species forests: ecology and management. Springer-Verlag, Germany, p 653CrossRefGoogle Scholar
  40. Rappaport D, Montagnini F (2014) Tree species growth under a rubber (Hevea brasiliensis) plantation: native restoration via enrichment planting in southern Bahia, Brazil. New For 45:715–732CrossRefGoogle Scholar
  41. Salt GW (1979) A comment on use of the use of the term “emergent properties”. Am Nat 113:145–148CrossRefGoogle Scholar
  42. Silva LF (1988) Alterações edáficas provocadas por essências florestais implantadas em solos de tabuleiro no Sul da Bahia. Rev Theobroma 18:259–267Google Scholar
  43. Silva LF, Vinha SG (1991) Influência da matéria orgânica no comportamento de espécies florestais, em plantio puro e misto, em solos de tabuleiro do sudeste baiano. Agrotrópica 3:93–99Google Scholar
  44. Souza CR, Rossi LMB, Azevedo CP, Vieira AH (2003) Paricá Schizolobium parahyba var. amazonicum (Huber ex Ducke) Barneby. Embrapa Amazônia Ocidental. Circular Técnica 18:12Google Scholar
  45. Vinha SG (1992) Espécies nativas da Mata Atlântica sul baiana uma opção para reflorestamento. In: Novaes AB, José ARS, Barbosa AA, Souza IVB (eds) Reflorestamento no Brasil. UESB, Vitória da Conquista-BA, pp 56–73Google Scholar
  46. Vinha SG, Lobão DEVP (1989) Estação ecológica do Pau-Brasil, Porto Seguro, Bahia. CEPLAC/CEPEC. 40p, IlhéusGoogle Scholar
  47. Vinha SG, Pereira RC (1983) Produção de folhedo e sua sazonalidade em 10 espécies arbóreas nativas no Sul da Bahia. Rev Theobroma 13:327–341Google Scholar
  48. Vinha SG, Carvalho AM, Silva LAM (1985) Taxa de decomposição do folhedo de dez espécies de árvores nativas no Sul da Bahia, Brasil. R Theobroma 15:207–212Google Scholar
  49. Wormald TJ 1992 Mixed and pure forest plantations in the tropics and subtropics. FAO Forestry Paper 103. Rome, FAO Technical Papers. Food and Agriculture Organization of the United Nations, p 152Google Scholar
  50. Zaia FC, Gama-Rodrigues AC, Gama-Rodrigues EF (2008) Formas de fósforo no solo sob leguminosas florestais, floresta secundária e pastagem no Norte Fluminense. R Bras Ci Solo 32:1191–1197CrossRefGoogle Scholar
  51. Zaia FC, Gama-Rodrigues AC, Gama-Rodrigues EF, Moço MKS, Fontes AG, Machado RCR, Baligar VC (2012) Carbon, nitrogen, organic phosphorus, microbial biomass and N mineralization in soils under cacao agroforestry systems in Bahia, Brazil. Agrofor Syst 86:197–212CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Darcy Ribeiro State University of Norte FluminenseCampos dos GoytacazesBrazil

Personalised recommendations