Advertisement

Quality-Driven Query Processing over Federated RDF Data Sources

  • Lars HelingEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11762)

Abstract

The integration of data from heterogeneous sources is a common task in various domains to enable data-driven applications. Data sources may range from publicly available sources to sources within data lakes of companies. The added value generated by integrating and analyzing the data greatly depends on the quality of the underlying data. As a result, querying heterogeneous data sources as a way of integrating data enabling such applications needs to consider quality aspects. Quality-driven query processing over RDF data sources aims to study approaches which consider data quality description of the data sources to determine optimal query plans. In contrast to most federated query approaches, in quality-driven query processing the quality of an optimal plan and thus of the retrieved data, not only depends on efficiency typically measured as execution time but also on other quality criteria. In this work, we present the challenges associated with considering multiple quality criteria in federated query processing and derive our problem statement accordingly. We present our research questions to address the problem and the associated hypotheses. Finally, we outline our approach including an evaluation plan and provide preliminary results.

Keywords

Federated querying Linked Data Data quality SPARQL 

Notes

Acknowledgements

I would like to thank my advisors Dr. Maribel Acosta and Prof. Dr. York Sure-Vetter for their support and valuable feedback.

References

  1. 1.
    Acosta, M., Hartig, O., Sequeda, J.: Federated RDF query processing. In: Sherif Sakr, A.Z. (ed.) Encyclopedia of Big Data Technologies. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-319-63962-8_228-1CrossRefGoogle Scholar
  2. 2.
    Acosta, M., Simperl, E., Flöck, F., Vidal, M.E.: Enhancing answer completeness of SPARQL queries via crowdsourcing. J. Web Semant. 45, 41–62 (2017) CrossRefGoogle Scholar
  3. 3.
    Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an adaptive query processing engine for sparql endpoints. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25073-6_2CrossRefGoogle Scholar
  4. 4.
    Ben Ellefi, M., et al.: RDF dataset profiling - a survey of features, methods, vocabularies and applications. Semant. Web 9(5), 677–705 (2018)CrossRefGoogle Scholar
  5. 5.
    Darari, F., Nutt, W., Pirrò, G., Razniewski, S.: Completeness statements about RDF data sources and their use for query answering. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 66–83. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41335-3_5CrossRefGoogle Scholar
  6. 6.
    Endris, K.M., Galkin, M., Lytra, I., Mami, M.N., Vidal, M.-E., Auer, S.: MULDER: querying the linked data web by bridging RDF molecule templates. In: Benslimane, D., Damiani, E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R. (eds.) DEXA 2017. LNCS, vol. 10438, pp. 3–18. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-64468-4_1CrossRefGoogle Scholar
  7. 7.
    Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Semant. Web 9(1), 77–129 (2017)CrossRefGoogle Scholar
  8. 8.
    Görlitz, O., Staab, S.: Splendid: SPARQL endpoint federation exploiting VoID descriptions. In: Proceedings of the Second International Conference on Consuming Linked Data, vol. 782, pp. 13–24. CEUR-WS. org (2011)Google Scholar
  9. 9.
    Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.U., Umbrich, J.: Data summaries for on-demand queries over linked data. In: Proceedings of the 19th International Conference on World Wide Web - WWW 2010, p. 411. ACM Press, Raleigh, North Carolina, USA (2010)Google Scholar
  10. 10.
    Hartig, O.: Querying trust in RDF data with tSPARQL. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 5–20. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02121-3_5CrossRefGoogle Scholar
  11. 11.
    Heling, L., Acosta, M., Maleshkova, M., Sure-Vetter, Y.: Querying large knowledge graphs over triple pattern fragments: an empirical study. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 86–102. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00668-6_6CrossRefGoogle Scholar
  12. 12.
    Hui, J., Li, L., Zhang, Z.: Integration of big data: a survey. In: Zhou, Q., Gan, Y., Jing, W., Song, X., Wang, Y., Lu, Z. (eds.) ICPCSEE 2018. CCIS, vol. 901, pp. 101–121. Springer, Singapore (2018).  https://doi.org/10.1007/978-981-13-2203-7_9CrossRefGoogle Scholar
  13. 13.
    Ibaraki, T., Kameda, T.: On the optimal nesting order for computing N-relational joins. ACM Trans. Database Syst. 9(3), 482–502 (1984)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lopes, N., Polleres, A., Straccia, U., Zimmermann, A.: AnQL: SPARQLing up annotated RDFS. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 518–533. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17746-0_33CrossRefGoogle Scholar
  15. 15.
    Naumann, F., Leser, U., Freytag, J.C.: Quality-driven integration of heterogenous information systems. In: VLDB 1999, Proceedings of 25th International Conference on Very Large Data Bases, Edinburgh, Scotland, UK, pp. 447–458 (1999)Google Scholar
  16. 16.
    Neumann, T., Moerkotte, G.: Characteristic sets: accurate cardinality estimation for RDF queries with multiple joins. In: 2011 IEEE 27th International Conference on Data Engineering (ICDE), pp. 984–994, April 2011Google Scholar
  17. 17.
    Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68234-9_39CrossRefGoogle Scholar
  18. 18.
    Saleem, M., Ngonga Ngomo, A.-C.: HiBISCuS: hypergraph-based source selection for SPARQL endpoint federation. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 176–191. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07443-6_13CrossRefGoogle Scholar
  19. 19.
    Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization techniques for federated query processing on linked data. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25073-6_38CrossRefGoogle Scholar
  20. 20.
    Tsialiamanis, P., Sidirourgos, L., Fundulaki, I., Christophides, V., Boncz, P.: Heuristics-based query optimisation for SPARQL. In: Proceedings of the 15th International Conference on Extending Database Technology - EDBT 2012, p. 324. ACM Press, Berlin, Germany (2012)Google Scholar
  21. 21.
    Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manag. Inf. Syst. 12(4), 5–33 (1996)CrossRefGoogle Scholar
  22. 22.
    Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for linked data: a survey. Semant. Web 7(1), 63–93 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute AIFBKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations