Advertisement

Cancer Stem Cells in Oral Carcinoma

  • Miguel Ángel González-MolesEmail author
  • Lucía González-Ruiz
  • Pablo Ramos-García
Chapter
  • 130 Downloads
Part of the Textbooks in Contemporary Dentistry book series (TECD)

Abstract

A new paradigm has recently been developed concerning the etiology of oral cancer. It proposes that solely stem cells, a small proportion of cells, are able to be transformed into a tumor, maintain its growth, and contribute to metastatic spread. This new perspective on oral oncogenesis may have major repercussions for the treatment of oral squamous cell carcinomas. This chapter reviews the most important concepts related to stem cells and cancer stem cells, reporting information on their physiology, detection, and implications for tumor onset and therapeutic targeting.

References

  1. 1.
    Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea--a paradigm shift. Cancer Res. 2006;66:1883–90; discussion 1895-6.  https://doi.org/10.1158/0008-5472.CAN-05-3153.CrossRefPubMedGoogle Scholar
  2. 2.
    Maitland NJ, Collins A. A tumour stem cell hypothesis for the origins of prostate cancer. BJU Int. 2005;96:1219–23.  https://doi.org/10.1111/j.1464-410X.2005.05744.x.CrossRefPubMedGoogle Scholar
  3. 3.
    Shakib K, Schrattenholz A, Soskic V. Stem cells in head and neck squamous cell carcinoma. Br J Oral Maxillofac Surg. 2011;49:503–6.  https://doi.org/10.1016/j.bjoms.2010.07.016.CrossRefPubMedGoogle Scholar
  4. 4.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.  https://doi.org/10.1038/35102167.CrossRefPubMedGoogle Scholar
  5. 5.
    Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.CrossRefGoogle Scholar
  6. 6.
    Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78:7634–8.CrossRefGoogle Scholar
  7. 7.
    Zhang Z, Filho MS, Nör JE. The biology of head and neck cancer stem cells. Oral Oncol. 2012;48:1–9.  https://doi.org/10.1016/j.oraloncology.2011.10.004. CrossRefPubMedGoogle Scholar
  8. 8.
    Boman BM, Wicha MS. Cancer stem cells: a step toward the cure. J Clin Oncol. 2008;26:2795–9.  https://doi.org/10.1200/JCO.2008.17.7436.CrossRefPubMedGoogle Scholar
  9. 9.
    Potten CS. Cell replacement in epidermis (keratopoiesis) via discrete units of proliferation. Int Rev Cytol. 1981;69:271–318.CrossRefGoogle Scholar
  10. 10.
    Ghazizadeh S, Taichman LB. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J. 2001;20:1215–22.  https://doi.org/10.1093/emboj/20.6.1215.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Janes SM, Lowell S, Hutter C. Epidermal stem cells. J Pathol. 2002;197:479–91.  https://doi.org/10.1002/path.1156.CrossRefPubMedGoogle Scholar
  12. 12.
    Bánkfalvi A, Krassort M, Végh A, Felszeghy E, Piffkó J. Deranged expression of the E-cadherin/beta-catenin complex and the epidermal growth factor receptor in the clinical evolution and progression of oral squamous cell carcinomas. J Oral Pathol Med. 2002;31:450–7.CrossRefGoogle Scholar
  13. 13.
    Tremmel SC, Götte K, Popp S, Weber S, Hörmann K, Bartram CR, et al. Intratumoral genomic heterogeneity in advanced head and neck cancer detected by comparative genomic hybridization. Cancer Genet Cytogenet. 2003;144:165–74.CrossRefGoogle Scholar
  14. 14.
    Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.  https://doi.org/10.1038/nrc2499.CrossRefPubMedGoogle Scholar
  15. 15.
    Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3:895–902.  https://doi.org/10.1038/nrc1232.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhou Z-T, Jiang W-W. Cancer stem cell model in oral squamous cell carcinoma. Curr Stem Cell Res Ther. 2008;3:17–20.CrossRefGoogle Scholar
  17. 17.
    Costea DE, Tsinkalovsky O, Vintermyr OK, Johannessen AC, Mackenzie IC. Cancer stem cells - new and potentially important targets for the therapy of oral squamous cell carcinoma. Oral Dis. 2006;12:443–54.  https://doi.org/10.1111/j.1601-0825.2006.01264.x.CrossRefPubMedGoogle Scholar
  18. 18.
    Mărgăritescu C, Pirici D, Simionescu C, Stepan A. The utility of CD44, CD117 and CD133 in identification of cancer stem cells (CSC) in oral squamous cell carcinomas (OSCC). Romanian J Morphol Embryol. 2011;52:985–93.Google Scholar
  19. 19.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.CrossRefGoogle Scholar
  20. 20.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.  https://doi.org/10.1073/pnas.0530291100.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Campbell LL, Polyak K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle. 2007;6:2332–8.  https://doi.org/10.4161/cc.6.19.4914.CrossRefPubMedGoogle Scholar
  22. 22.
    Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194:23–8.CrossRefGoogle Scholar
  23. 23.
    Kim CFB, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121:823–35.  https://doi.org/10.1016/j.cell.2005.03.032.CrossRefPubMedGoogle Scholar
  24. 24.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.  https://doi.org/10.1158/0008-5472.CAN-05-2018.CrossRefPubMedGoogle Scholar
  25. 25.
    Dalerba P, Dylla SJ, Park I-K, Liu R, Wang X, Cho RW, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A. 2007;104:10158–63.  https://doi.org/10.1073/pnas.0703478104.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMedGoogle Scholar
  27. 27.
    O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.  https://doi.org/10.1038/nature05372.CrossRefPubMedGoogle Scholar
  28. 28.
    Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.  https://doi.org/10.1016/j.stem.2007.06.002.CrossRefPubMedGoogle Scholar
  29. 29.
    Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell. 2008;13:153–66.  https://doi.org/10.1016/j.ccr.2008.01.013.CrossRefPubMedGoogle Scholar
  30. 30.
    Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 2005;65:9328–37.  https://doi.org/10.1158/0008-5472.CAN-05-1343.CrossRefPubMedGoogle Scholar
  31. 31.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.  https://doi.org/10.1038/367645a0.CrossRefPubMedGoogle Scholar
  32. 32.
    Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A. 2007;104:973–8.  https://doi.org/10.1073/pnas.0610117104.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.  https://doi.org/10.1038/nature03128.CrossRefPubMedGoogle Scholar
  34. 34.
    Potten CS, Owen G, Booth D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci. 2002;115:2381–8.PubMedGoogle Scholar
  35. 35.
    Dontu G, Wicha MS. Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia. 2005;10:75–86.  https://doi.org/10.1007/s10911-005-2542-5.CrossRefPubMedGoogle Scholar
  36. 36.
    Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJA. Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer. 2005;5:899–904.  https://doi.org/10.1038/nrc1740.CrossRefPubMedGoogle Scholar
  37. 37.
    Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004;116:639–48.CrossRefGoogle Scholar
  38. 38.
    Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, et al. Gastric cancer originating from bone marrow-derived cells. Science. 2004;306:1568–71.  https://doi.org/10.1126/science.1099513.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhu AJ, Watt FM. beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development. 1999;126:2285–98.PubMedGoogle Scholar
  40. 40.
    Perez-Losada J, Balmain A. Stem-cell hierarchy in skin cancer. Nat Rev Cancer. 2003;3:434–43.  https://doi.org/10.1038/nrc1095.CrossRefPubMedGoogle Scholar
  41. 41.
    Abollo-Jiménez F, Jiménez R, Cobaleda C. Physiological cellular reprogramming and cancer. Semin Cancer Biol. 2010;20:98–106.  https://doi.org/10.1016/j.semcancer.2010.02.002.CrossRefPubMedGoogle Scholar
  42. 42.
    Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol. 2008;26:795–7.  https://doi.org/10.1038/nbt1418.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Iglesias-Linares A, Yañez-Vico RM, González-Moles MA. Potential role of HDAC inhibitors in cancer therapy: insights into oral squamous cell carcinoma. Oral Oncol. 2010;46:323–9.  https://doi.org/10.1016/j.oraloncology.2010.01.009.CrossRefPubMedGoogle Scholar
  44. 44.
    Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, et al. The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84–9.  https://doi.org/10.1038/35000034.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.  https://doi.org/10.1016/j.cell.2008.03.027.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117:927–39.  https://doi.org/10.1016/j.cell.2004.06.006.CrossRefPubMedGoogle Scholar
  47. 47.
    Sánchez-Tilló E, Lázaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A, et al. ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene. 2010;29:3490–500.  https://doi.org/10.1038/onc.2010.102.CrossRefPubMedGoogle Scholar
  48. 48.
    Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.  https://doi.org/10.1038/35000025.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gonzalez-Moles MA, Ruiz-Avila I, Gil-Montoya JA, Esteban F, Bravo M. Analysis of Ki-67 expression in oral squamous cell carcinoma: why Ki-67 is not a prognostic indicator. Oral Oncol. 2010;46:525–30.  https://doi.org/10.1016/j.oraloncology.2010.03.020.CrossRefPubMedGoogle Scholar
  50. 50.
    González-Moles MA, Bravo M, Ruiz-Avila I, Acebal F, Gil-Montoya JA, Brener S, et al. Ki-67 expression in non-tumour epithelium adjacent to oral cancer as risk marker for multiple oral tumours. Oral Dis. 2010;16:68–75.  https://doi.org/10.1111/j.1601-0825.2009.01611.x.CrossRefPubMedGoogle Scholar
  51. 51.
    Gonzalez-Moles MA, Ruiz-Avila I, Rodriguez-Archilla A, Martinez-Lara I. Suprabasal expression of Ki-67 antigen as a marker for the presence and severity of oral epithelial dysplasia. Head Neck. 2000;22:658–61.CrossRefGoogle Scholar
  52. 52.
    Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A. 1987;84:2302–6.CrossRefGoogle Scholar
  53. 53.
    Kaur P, Li A, Redvers R, Bertoncello I. Keratinocyte stem cell assays: an evolving science. J Investig Dermatol Symp Proc. 2004;9:238–47.  https://doi.org/10.1111/j.1087-0024.2004.09306.x.CrossRefPubMedGoogle Scholar
  54. 54.
    Wang J, Guo L-P, Chen L-Z, Zeng Y-X, Lu SH. Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res. 2007;67:3716–24.  https://doi.org/10.1158/0008-5472.CAN-06-4343.CrossRefPubMedGoogle Scholar
  55. 55.
    Seigel GM, Campbell LM, Narayan M, Gonzalez-Fernandez F. Cancer stem cell characteristics in retinoblastoma. Mol Vis. 2005;11:729–37.PubMedGoogle Scholar
  56. 56.
    Tabor MH, Clay MR, Owen JH, Bradford CR, Carey TE, Wolf GT, et al. Head and neck cancer stem cells: the side population. Laryngoscope. 2011;121:527–33.  https://doi.org/10.1002/lary.21032.CrossRefPubMedGoogle Scholar
  57. 57.
    Adams JC, Watt FM. Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature. 1989;340:307–9.  https://doi.org/10.1038/340307a0.CrossRefPubMedGoogle Scholar
  58. 58.
    Levy L, Broad S, Diekmann D, Evans RD, Watt FM. beta1 integrins regulate keratinocyte adhesion and differentiation by distinct mechanisms. Mol Biol Cell. 2000;11:453–66.CrossRefGoogle Scholar
  59. 59.
    Hombach-Klonisch S, Paranjothy T, Wiechec E, Pocar P, Mustafa T, Seifert A, et al. Cancer stem cells as targets for cancer therapy: selected cancers as examples. Arch Immunol Ther Exp. 2008;56:165–80.  https://doi.org/10.1007/s00005-008-0023-4.CrossRefGoogle Scholar
  60. 60.
    Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95:379–91.CrossRefGoogle Scholar
  61. 61.
    Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24:372–6.  https://doi.org/10.1038/74199.CrossRefPubMedGoogle Scholar
  62. 62.
    Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17:126–40.  https://doi.org/10.1101/gad.224503. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113:643–55.CrossRefGoogle Scholar
  64. 64.
    Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003;113:631–42.CrossRefGoogle Scholar
  65. 65.
    Campbell PA, Perez-Iratxeta C, Andrade-Navarro MA, Rudnicki MA. Oct4 targets regulatory nodes to modulate stem cell function. PLoS One. 2007;2:e553.  https://doi.org/10.1371/journal.pone.0000553.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.  https://doi.org/10.1016/j.cell.2005.08.020.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Loh Y-H, Wu Q, Chew J-L, Vega VB, Zhang W, Chen X, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38:431–40.  https://doi.org/10.1038/ng1760.CrossRefPubMedGoogle Scholar
  68. 68.
    de Jong J, Looijenga LHJ. Stem cell marker OCT3/4 in tumor biology and germ cell tumor diagnostics: history and future. Crit Rev Oncog. 2006;12:171–203.CrossRefGoogle Scholar
  69. 69.
    Marynka-Kalmani K, Treves S, Yafee M, Rachima H, Gafni Y, Cohen MA, et al. The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells. 2010;28:984–95.  https://doi.org/10.1002/stem.425. CrossRefPubMedGoogle Scholar
  70. 70.
    Lim YC, Oh S-Y, Cha YY, Kim S-H, Jin X, Kim H. Cancer stem cell traits in squamospheres derived from primary head and neck squamous cell carcinomas. Oral Oncol. 2011;47:83–91.  https://doi.org/10.1016/j.oraloncology.2010.11.011.CrossRefPubMedGoogle Scholar
  71. 71.
    Zhang Q, Shi S, Yen Y, Brown J, Ta JQ, Le AD. A subpopulation of CD133(+) cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Lett. 2010;289:151–60.  https://doi.org/10.1016/j.canlet.2009.08.010.CrossRefPubMedGoogle Scholar
  72. 72.
    Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990;61:1303–13.CrossRefGoogle Scholar
  73. 73.
    Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci U S A. 1992;89:12160–4.CrossRefGoogle Scholar
  74. 74.
    González-Moles MA, Bravo M, Ruiz-Avila I, Esteban F, Bascones-Martínez A, González-Moles S. Adhesion molecule CD44 expression in non-tumour epithelium adjacent to tongue cancer. Oral Oncol. 2004;40:281–6.CrossRefGoogle Scholar
  75. 75.
    Mack B, Gires O. CD44s and CD44v6 expression in head and neck epithelia. PLoS One. 2008;3:e3360.  https://doi.org/10.1371/journal.pone.0003360.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Oliveira LR, Oliveira-Costa JP, Araujo IM, Soave DF, Zanetti JS, Soares FA, et al. Cancer stem cell immunophenotypes in oral squamous cell carcinoma. J Oral Pathol Med. 2011;40:135–42.  https://doi.org/10.1111/j.1600-0714.2010.00967.x.CrossRefPubMedGoogle Scholar
  77. 77.
    Clay MR, Tabor M, Owen JH, Carey TE, Bradford CR, Wolf GT, et al. Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck. 2010;32:1195–201.  https://doi.org/10.1002/hed.21315.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    de Jong MC, Pramana J, van der Wal JE, Lacko M, Peutz-Kootstra CJ, de Jong JM, et al. CD44 expression predicts local recurrence after radiotherapy in larynx cancer. Clin Cancer Res. 2010;16:5329–38.  https://doi.org/10.1158/1078-0432.CCR-10-0799.CrossRefPubMedGoogle Scholar
  79. 79.
    Chen Y-W, Chen K-H, Huang P-I, Chen Y-C, Chiou G-Y, Lo W-L, et al. Cucurbitacin I suppressed stem-like property and enhanced radiation-induced apoptosis in head and neck squamous carcinoma--derived CD44(+)ALDH1(+) cells. Mol Cancer Ther. 2010;9:2879–92.  https://doi.org/10.1158/1535-7163.MCT-10-0504.CrossRefPubMedGoogle Scholar
  80. 80.
    Joshua B, Kaplan MJ, Doweck I, Pai R, Weissman IL, Prince ME, et al. Frequency of cells expressing CD44, a head and neck cancer stem cell marker: correlation with tumor aggressiveness. Head Neck. 2012;34:42–9.  https://doi.org/10.1002/hed.21699.CrossRefPubMedGoogle Scholar
  81. 81.
    Okamoto I, Tsuiki H, Kenyon LC, Godwin AK, Emlet DR, Holgado-Madruga M, et al. Proteolytic cleavage of the CD44 adhesion molecule in multiple human tumors. Am J Pathol. 2002;160:441–7.  https://doi.org/10.1016/S0002-9440(10)64863-8.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Sato S, Miyauchi M, Takekoshi T, Zhao M, Kudo Y, Ogawa I, et al. Reduced expression of CD44 variant 9 is related to lymph node metastasis and poor survival in squamous cell carcinoma of tongue. Oral Oncol. 2000;36:545–9.CrossRefGoogle Scholar
  83. 83.
    Carinci F, Stabellini G, Calvitti M, Pelucchi S, Targa L, Farina A, et al. CD44 as prognostic factor in oral and oropharyngeal squamous cell carcinoma. J Craniofac Surg. 2002;13:85–9.CrossRefGoogle Scholar
  84. 84.
    Kosunen A, Pirinen R, Ropponen K, Pukkila M, Kellokoski J, Virtaniemi J, et al. CD44 expression and its relationship with MMP-9, clinicopathological factors and survival in oral squamous cell carcinoma. Oral Oncol. 2007;43:51–9.  https://doi.org/10.1016/j.oraloncology.2006.01.003.CrossRefPubMedGoogle Scholar
  85. 85.
    Gonzalez-Moles MA, Esteban F, Rodriguez-Archilla A, Ruiz-Avila I, Gonzalez-Moles S. Importance of tumour thickness measurement in prognosis of tongue cancer. Oral Oncol. 2002;38:394–7.CrossRefGoogle Scholar
  86. 86.
    Chen Y-C, Chen Y-W, Hsu H-S, Tseng L-M, Huang P-I, Lu K-H, et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun. 2009;385:307–13.  https://doi.org/10.1016/j.bbrc.2009.05.048.CrossRefPubMedGoogle Scholar
  87. 87.
    Krishnamurthy S, Dong Z, Vodopyanov D, Imai A, Helman JI, Prince ME, et al. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res. 2010;70:9969–78.  https://doi.org/10.1158/0008-5472.CAN-10-1712.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer. 2002;34:255–68.  https://doi.org/10.1002/gcc.10083.CrossRefPubMedGoogle Scholar
  89. 89.
    Vleminckx K, Vakaet L, Mareel M, Fiers W, van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991;66:107–19.CrossRefGoogle Scholar
  90. 90.
    Hoteiya T, Hayashi E, Satomura K, Kamata N, Nagayama M. Expression of E-cadherin in oral cancer cell lines and its relationship to invasiveness in SCID mice in vivo. J Oral Pathol Med. 1999;28:107–11.CrossRefGoogle Scholar
  91. 91.
    Yu MA, Kiang A, Wang-Rodriguez J, Rahimy E, Haas M, Yu V, et al. Nicotine promotes acquisition of stem cell and epithelial-to-mesenchymal properties in head and neck squamous cell carcinoma. PLoS One. 2012;7:e51967.  https://doi.org/10.1371/journal.pone.0051967.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Reid PA, Wilson P, Li Y, Marcu LG, Bezak E. Current understanding of cancer stem cells: review of their radiobiology and role in head and neck cancers. Head Neck. 2017;39:1920–32.  https://doi.org/10.1002/hed.24848.CrossRefPubMedGoogle Scholar
  93. 93.
    Borovski T, De Sousa E Melo F, Vermeulen L, Medema JP. Cancer stem cell niche: the place to be. Cancer Res. 2011;71:634–9.  https://doi.org/10.1158/0008-5472.CAN-10-3220.CrossRefPubMedGoogle Scholar
  94. 94.
    Ritchie KE, Nör JE. Perivascular stem cell niche in head and neck cancer. Cancer Lett. 2013;338:41–6.  https://doi.org/10.1016/j.canlet.2012.07.025.CrossRefPubMedGoogle Scholar
  95. 95.
    Krishnamurthy S, Warner KA, Dong Z, Imai A, Nör C, Ward BB, et al. Endothelial interleukin-6 defines the tumorigenic potential of primary human cancer stem cells. Stem Cells. 2014;32:2845–57.  https://doi.org/10.1002/stem.1793.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Zhang M, Kumar B, Piao L, Xie X, Schmitt A, Arradaza N, et al. Elevated intrinsic cancer stem cell population in human papillomavirus-associated head and neck squamous cell carcinoma. Cancer. 2014;120:992–1001.  https://doi.org/10.1002/cncr.28538.CrossRefPubMedGoogle Scholar
  97. 97.
    Brunner TB, Kunz-Schughart LA, Grosse-Gehling P, Baumann M. Cancer stem cells as a predictive factor in radiotherapy. Semin Radiat Oncol. 2012;22:151–74.  https://doi.org/10.1016/j.semradonc.2011.12.003.CrossRefPubMedGoogle Scholar
  98. 98.
    Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, et al. ICRP Publication 131: stem cell biology with respect to carcinogenesis aspects of radiological protection. Ann ICRP. 2015;44:7–357.  https://doi.org/10.1177/0146645315595585.CrossRefPubMedGoogle Scholar
  99. 99.
    Hittelman WN, Liao Y, Wang L, Milas L. Are cancer stem cells radioresistant? Future Oncol. 2010;6:1563–76.  https://doi.org/10.2217/fon.10.121.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Cojoc M, Mäbert K, Muders MH, Dubrovska A. A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms. Semin Cancer Biol. 2015;31:16–27.  https://doi.org/10.1016/j.semcancer.2014.06.004.CrossRefGoogle Scholar
  101. 101.
    Ogawa K, Yoshioka Y, Isohashi F, Seo Y, Yoshida K, Yamazaki H. Radiotherapy targeting cancer stem cells: current views and future perspectives. Anticancer Res. 2013;33:747–54.PubMedGoogle Scholar
  102. 102.
    Olive PL. Detection of DNA damage in individual cells by analysis of histone H2AX phosphorylation. Methods Cell Biol. 2004;75:355–73.CrossRefGoogle Scholar
  103. 103.
    Zhang M, Atkinson RL, Rosen JM. Selective targeting of radiation-resistant tumor-initiating cells. Proc Natl Acad Sci U S A. 2010;107:3522–7.  https://doi.org/10.1073/pnas.0910179107.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Rich JN. Cancer stem cells in radiation resistance. Cancer Res. 2007;67:8980–4.  https://doi.org/10.1158/0008-5472.CAN-07-0895.CrossRefPubMedGoogle Scholar
  105. 105.
    Chikamatsu K, Ishii H, Takahashi G, Okamoto A, Moriyama M, Sakakura K, et al. Resistance to apoptosis-inducing stimuli in CD44+ head and neck squamous cell carcinoma cells. Head Neck. 2012;34:336–43.  https://doi.org/10.1002/hed.21732.CrossRefPubMedGoogle Scholar
  106. 106.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.  https://doi.org/10.1038/nature05236.CrossRefPubMedGoogle Scholar
  107. 107.
    Sinha N, Mukhopadhyay S, Das DN, Panda PK, Bhutia SK. Relevance of cancer initiating/stem cells in carcinogenesis and therapy resistance in oral cancer. Oral Oncol. 2013;49:854–62.  https://doi.org/10.1016/j.oraloncology.2013.06.010.CrossRefPubMedGoogle Scholar
  108. 108.
    Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer. 2009;125:717–22.  https://doi.org/10.1002/ijc.24402.CrossRefPubMedGoogle Scholar
  109. 109.
    Park I-K, Morrison SJ, Clarke MF. Bmi1, stem cells, and senescence regulation. J Clin Invest. 2004;113:175–9.  https://doi.org/10.1172/JCI20800.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Chen Y-C, Chang C-J, Hsu H-S, Chen Y-W, Tai L-K, Tseng L-M, et al. Inhibition of tumorigenicity and enhancement of radiochemosensitivity in head and neck squamous cell cancer-derived ALDH1-positive cells by knockdown of Bmi-1. Oral Oncol. 2010;46:158–65.  https://doi.org/10.1016/j.oraloncology.2009.11.007.CrossRefPubMedGoogle Scholar
  111. 111.
    Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004;6:931–40.  https://doi.org/10.1038/ncb1173.CrossRefPubMedGoogle Scholar
  112. 112.
    Zhao Y, Bao Q, Renner A, Camaj P, Eichhorn M, Ischenko I, et al. Cancer stem cells and angiogenesis. Int J Dev Biol. 2011;55:477–82.  https://doi.org/10.1387/ijdb.103225yz.CrossRefPubMedGoogle Scholar
  113. 113.
    Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP, et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature. 2010;466:133–7.  https://doi.org/10.1038/nature09161.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Busse A, Letsch A, Fusi A, Nonnenmacher A, Stather D, Ochsenreither S, et al. Characterization of small spheres derived from various solid tumor cell lines: are they suitable targets for T cells? Clin Exp Metastasis. 2013;30:781–91.  https://doi.org/10.1007/s10585-013-9578-5.CrossRefPubMedGoogle Scholar
  115. 115.
    Liao T, Kaufmann AM, Qian X, Sangvatanakul V, Chen C, Kube T, et al. Susceptibility to cytotoxic T cell lysis of cancer stem cells derived from cervical and head and neck tumor cell lines. J Cancer Res Clin Oncol. 2013;139:159–70.  https://doi.org/10.1007/s00432-012-1311-2.CrossRefPubMedGoogle Scholar
  116. 116.
    Visus C, Wang Y, Lozano-Leon A, Ferris RL, Silver S, Szczepanski MJ, et al. Targeting ALDH(bright) human carcinoma-initiating cells with ALDH1A1-specific CD8+ T cells. Clin Cancer Res. 2011;17:6174–84.  https://doi.org/10.1158/1078-0432.CCR-11-1111.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Ning N, Pan Q, Zheng F, Teitz-Tennenbaum S, Egenti M, Yet J, et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res. 2012;72:1853–64.  https://doi.org/10.1158/0008-5472.CAN-11-1400.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Duarte S, Momier D, Baqué P, Casanova V, Loubat A, Samson M, et al. Preventive cancer stem cell-based vaccination reduces liver metastasis development in a rat colon carcinoma syngeneic model. Stem Cells. 2013;31:423–32.  https://doi.org/10.1002/stem.1292.CrossRefPubMedGoogle Scholar
  119. 119.
    Yu C-C, Tsai L-L, Wang M-L, Yu C-H, Lo W-L, Chang Y-C, et al. miR145 targets the SOX9/ADAM17 axis to inhibit tumor-initiating cells and IL-6-mediated paracrine effects in head and neck cancer. Cancer Res. 2013;73:3425–40.  https://doi.org/10.1158/0008-5472.CAN-12-3840.CrossRefPubMedGoogle Scholar
  120. 120.
    Duffy SA, Taylor JMG, Terrell JE, Islam M, Li Y, Fowler KE, et al. Interleukin-6 predicts recurrence and survival among head and neck cancer patients. Cancer. 2008;113:750–7.  https://doi.org/10.1002/cncr.23615.CrossRefPubMedGoogle Scholar
  121. 121.
    Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res. 2007;67:3560–4.  https://doi.org/10.1158/0008-5472.CAN-06-4238.CrossRefPubMedGoogle Scholar
  122. 122.
    Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med. 2004;10:55–63.  https://doi.org/10.1038/nm979.CrossRefPubMedGoogle Scholar
  123. 123.
    Zechner D, Fujita Y, Hülsken J, Müller T, Walther I, Taketo MM, et al. beta-catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev Biol. 2003;258:406–18.CrossRefGoogle Scholar
  124. 124.
    Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res. 2010;16:3153–62.  https://doi.org/10.1158/1078-0432.CCR-09-2943.CrossRefPubMedGoogle Scholar
  125. 125.
    Curtin JC, Lorenzi MV. Drug discovery approaches to target Wnt signaling in cancer stem cells. Oncotarget. 2010;1:563–77.  https://doi.org/10.18632/oncotarget.101016.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Takebe N, Ivy SP. Controversies in cancer stem cells: targeting embryonic signaling pathways. Clin Cancer Res. 2010;16:3106–12.  https://doi.org/10.1158/1078-0432.CCR-09-2934.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Xia H, Cheung WKC, Sze J, Lu G, Jiang S, Yao H, et al. miR-200a regulates epithelial-mesenchymal to stem-like transition via ZEB2 and beta-catenin signaling. J Biol Chem. 2010;285:36995–7004.  https://doi.org/10.1074/jbc.M110.133744.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Kupferman ME, Jiffar T, El-Naggar A, Yilmaz T, Zhou G, Xie T, et al. TrkB induces EMT and has a key role in invasion of head and neck squamous cell carcinoma. Oncogene. 2010;29:2047–59.  https://doi.org/10.1038/onc.2009.486.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Visus C, Ito D, Amoscato A, Maciejewska-Franczak M, Abdelsalem A, Dhir R, et al. Identification of human aldehyde dehydrogenase 1 family member A1 as a novel CD8+ T-cell-defined tumor antigen in squamous cell carcinoma of the head and neck. Cancer Res. 2007;67:10538–45.  https://doi.org/10.1158/0008-5472.CAN-07-1346.CrossRefPubMedGoogle Scholar

Readings Especially Recommended

  1. González-Moles MA, Scully C, Ruiz-Ávila I, Plaza-Campillo JJ. The cancer stem cell hypothesis applied to oral carcinoma. Oral Oncol. 2013;49(8):738–46.CrossRefGoogle Scholar
  2. Reid PA, Wilson P, Li Y, Marcu LG, Bezak E. Current understanding of cancer stem cells: review of their radiobiology and role in head and neck cancers. Head Neck. 2017;39(9):1920–32.  https://doi.org/10.1002/hed.24848. Epub 2017 Jun 23.CrossRefPubMedGoogle Scholar
  3. Méry B, Guy JB, Espenel S, Wozny AS, Simonet S, Vallard A, Alphonse G, Ardail D, Rodriguez-Lafrasse C, Magné N. Targeting head and neck tumoral stem cells: from biological aspects to therapeutic perspectives. World J Stem Cells. 2016;8(1):13 21.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Miguel Ángel González-Moles
    • 1
    Email author
  • Lucía González-Ruiz
    • 2
  • Pablo Ramos-García
    • 1
  1. 1.School of DentistryUniversity of GranadaGranadaSpain
  2. 2.Dermatology ServiceCiudad Real General University HospitalCiudad RealSpain

Personalised recommendations