Attenuation Imaging with Pulse-Echo Ultrasound Based on an Acoustic Reflector

  • Richard RauEmail author
  • Ozan Unal
  • Dieter Schweizer
  • Valery Vishnevskiy
  • Orcun Goksel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11768)


Ultrasound attenuation is caused by absorption and scattering in tissue and is thus a function of tissue composition, hence its imaging offers great potential for screening and differential diagnosis. In this paper we propose a novel method that allows to reconstruct spatial attenuation distribution in tissue based on computed tomography, using reflections from a passive acoustic reflector. This requires a standard ultrasound transducer operating in pulse-echo mode, thus it can be implemented on conventional ultrasound systems with minor modifications. We use calibration with water measurements in order to normalize measurements for quantitative imaging of attenuation. In contrast to earlier techniques, we herein show that attenuation reconstructions are possible without any geometric prior on the inclusion location or shape. We present a quantitative evaluation of reconstructions based on simulations, gelatin phantoms, and ex-vivo bovine skeletal muscle tissue, achieving contrast-to-noise ratio of up to 2.3 for an inclusion in ex-vivo tissue.


Ultrasound Attenuation Computed tomography Speed of sound Limited angle tomography 



It was provided by the Swiss National Science Foundation and Innosuisse.


  1. 1.
    Bamber, J.C., Hill, C.R.: Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature. Ultras. Med. Biol. 5(2), 149–157 (1979)CrossRefGoogle Scholar
  2. 2.
    Bamber, J.C., Hill, C.R., King, J.A.: Acoustic properties of normal and cancerous human liver: dependence on tissue structure. Ultras. Med. Biol. 7(2), 135–144 (1981)CrossRefGoogle Scholar
  3. 3.
    Chang, C.H., Huang, S.W., Yang, H.C., Chou, Y.H., Li, P.C.: Reconstruction of ultrasonic sound velocity and attenuation coefficient using linear arrays: clinical assessment. Ultras. Med. Biol. 33(11), 1681–1687 (2007)CrossRefGoogle Scholar
  4. 4.
    Duric, N., et al.: Detection of breast cancer with ultrasound tomography: first results with the Computed Ultrasound Risk Evaluation (CURE) prototype. Med. Phys. 34(2), 773–785 (2007)CrossRefGoogle Scholar
  5. 5.
    Eby, S.F., Song, P., Chen, S., Chen, Q., Greenleaf, J.F., An, K.N.: Validation of shear wave elastography in skeletal muscle. J. Biomech. 46(14), 2381–2387 (2013)CrossRefGoogle Scholar
  6. 6.
    Glozman, T., Azhari, H.: A method for characterization of tissue elastic properties combining ultrasonic computed tomography with elastography. J. Ultras. Med. 29(3), 387–398 (2010)CrossRefGoogle Scholar
  7. 7.
    Goss, S.A., Johnston, R.L., Dunn, F.: Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J. Acoust. Soc. Am. 64, 423–457 (1978)CrossRefGoogle Scholar
  8. 8.
    Goss, S.A., Johnston, R.L., Dunn, F.: Compilation of empirical ultrasonic properties of mammalian tissues. II. J. Acoust. Soc. Am. 68(1), 93–108 (1980)CrossRefGoogle Scholar
  9. 9.
    Huang, S.W., Li, P.C.: Ultrasonic computed tomography reconstruction of the attenuation coefficient using a linear array. IEEE Trans. Ultras. Ferr. Freq. Control 52(11), 2011–2022 (2005)CrossRefGoogle Scholar
  10. 10.
    Li, C., Sandhu, G.Y., Boone, M., Duric, N.: Breast imaging using waveform attenuation tomography. In: Procs SPIE Med Imaging, vol. 10139, p. 101390A (2017)Google Scholar
  11. 11.
    Sanabria, S.J., Rominger, M.B., Goksel, O.: Speed-of-sound imaging based on reflector delineation. IEEE Trans. Biomed. Eng. 66(7), 1949–1962 (2019)CrossRefGoogle Scholar
  12. 12.
    Sanabria, S., et al.: Speed of sound ultrasound: a novel technique to identify muscle loss in seniors. Eur. Radiol. 29(1), 3–12 (2019)CrossRefGoogle Scholar
  13. 13.
    Sanabria, S.J., Goksel, O.: Hand-held sound-speed imaging based on ultrasound reflector delineation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 568–576. Springer, Cham (2016). Scholar
  14. 14.
    Sanabria, S.J., et al.: Breast-density assessment with handheld ultrasound: a novel biomarker to assess breast cancer risk and to tailor screening? Eur. Radiol. 28(8), 3165–3175 (2018)CrossRefGoogle Scholar
  15. 15.
    Sanabria, S.J., Ozkan, E., Rominger, M., Goksel, O.: Spatial domain reconstruction for imaging speed-of-sound with pulse-echo ultrasound: simulation and in vivo study. Phys. Med. Biol. 63(21), 215015 (2018)CrossRefGoogle Scholar
  16. 16.
    Sandrin, L., Tanter, M., Catheline, S., Fink, M.: Shear modulus imaging with 2-D transient elastography. IEEE Trans. Ultras. Ferr. Freq. Control 49(4), 426–435 (2002)CrossRefGoogle Scholar
  17. 17.
    Smith, N.B., Webb, A.G.: Introduction to Medical Imaging: Physics, Engineering, and Clinical Applications. Cambridge University Press, Cambridge (2011)Google Scholar
  18. 18.
    Treeby, B.E., Cox, B.T.: k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15(2), 021314 (2010)CrossRefGoogle Scholar
  19. 19.
    Vishnevskiy, V., Rau, R., Goksel, O.: Deep variational networks with exponential weighting for learning computed tomography. In: MICCAI (2019, accepted). arXiv:1906.05528
  20. 20.
    Vishnevskiy, V., Sanabria, S.J., Goksel, O.: Image reconstruction via variational network for real-time hand-held sound-speed imaging. In: Knoll, F., Maier, A., Rueckert, D. (eds.) MLMIR 2018. LNCS, vol. 11074, pp. 120–128. Springer, Cham (2018). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Richard Rau
    • 1
    Email author
  • Ozan Unal
    • 1
  • Dieter Schweizer
    • 1
  • Valery Vishnevskiy
    • 1
  • Orcun Goksel
    • 1
  1. 1.Computer-assisted Applications in MedicineETH ZurichZurichSwitzerland

Personalised recommendations